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Figure 
~~ • The A c t u a l  and R e f e r e n c e  T r aj e c t o r i e s , and

the Perturbation State 6x (t)

about the referenc e values (x (t) and u (t)) in a Taylor
Series:

3f
f(x(t)) ,u(t)) = f(~~~(t) ,u ( t)) + ~~ • 5x(t)

0

+ -
~~

-
~~~ 6 u ( t )  + ~~ (~ x(t) ,äu (t)) ( 5 )

0

£(x (t) ,u(t)) = t) ,~~~(t) )  + 6 x ( t )  + ~~~~ óu (t)

0 0

+ ~~(6x(t),5u(t)) (h)

where the vector funct ions and ~~ represent the higher
order terms in the series expansion. If the nominal is sub-

tracted from the above equations and the hi gher  order  te rms
and ar e neg lec ted , th e l ine ar sys tem model  re sul ts:

5~~(t) = A (t)óx(t) + B(t)6u(t) ( 7 )

•~v (t) = C ( t)~S x ( t )  + D(t )~~u(t) (8)
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where

A ( t )  is the nxn s t a t e  m a t r i x  (~~f/ ~ x)  e v a lu a t ed a l o ng
the reference trajectory at x (t) and u (t)

B (t) is the nxm control matrix (~ f/~ u) evaluated
at x x , u = u- —0 - -O

C(t) is the rxn state measurement matrix (~~ /~ x)
ev a l u a t e d  a t  x = x , u = u

D(t) is the rxm control measurement matrix (~~ /au)
evaluated at x = x0, ~ =

The structure of the linear system model is depicted in Fi gure -
•

In general , the matrices of partial derivatives A , B , C ,
and D must be calculated along the reference trajectory ; i.e.
the elements of the matr ices are functions of the reference

state and reference control. The system is thus time varying

(or nonautonomous) • For certain classes of s~ s~ ems , it may he
permissible to assume these matrices to be constant over the

region and time interval of interest. In this case , the system
is classified as time invariant , and the coefficients of the

AT N
• 

•

• •

Fkure 7. structure of the Line ar (Perturbat ion ) Model
of a Physic al Process

I ()

J
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l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  r e p r e s e n t e d  by Eqs. (7) and ( 8 )
b ecome c o n s t a n t .  The constan t coefficient diff em entia l equa-

t i ons are  a m e n a b l e  t o  t h e  t r a n s f o r m  m e t h o d s  w h i c h  a rc  critical

to classical desi gn approaches.

d. Reduced  Orde r  M o d e l i n g

For  t h e  p u r p o s e  of s i m p l y  p r e d i c t i n g  or “ s i m u l a t i n g ” s t a t e

trajectories , state models of hi gh dim nen si on ali t v (n -
~ 3(1 or

more) are well w i t h i n  the comput ational capabilities of modern

large-scale computing systems. h owever , as a r u l e , control

system design methods , both classical and modern , rapidl y

become unwieldy as system dimension increases . For t h i s

reason , much attention has been given to the reduction of model

order. It should be noted that controllers desi gned using a

reduced-order model will be suboptimal. The performance of such

suboptimal controllers must be evaluated , generall y , in a high-

tidelit v simulation to determine whether the r e d u c e d - o r d e r  de-
signs are acceptable.

The following outlines some of the more successful methods

of reduced-order modelin g . Specific examples will  he given in

subsequent secr~ ons .

(1) Ne glecting Subsystems

The most basic form of mode l order reduction is

simpl y i gnoring certain subsystems whose states are either not

observable or not controllable. An example of this is the

neglecting of bending modes whose natural frequencies are

beyond the control bandwidth of the actuator which moves a

particular aerodynamic surface.

17
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An observable subsys tem is one whose ini tial state x(t0)
can be comple tely and uniquely recons truc ted from all subsequent

measurements X~(t) and controls u(t) in the interval [t 0~ tf].
Sim ilarly , a con trollable subsys tem is one which can be brought
from an arbi trary ini t ial stat e x(t0) and initial time to a

specified term inal state x(tf) within the time span (t f-t 0).

There exist in the literature [6] certain mathematical expres-

sions wh ich test for observability and controllability, no tab ly
for  l inear systems . Wh ile these expres sions will not be re-
it erated here , Figur e 8 presents an illustration of this most

bas ic conc ep t of model r educ t ion .

FULL ORDER REDUCED ORDER

NI 2 NI
2 ]

M3

M 1 
= CONTROLLABLE , UNOBSERVABLE SUBSYSTEM

NI2 = CONTROLLABLE , OBSERVABLE SUBSYSTEM

M
3 UNCONTROLLABLE , OBSERVABLE SUSBSYSTENI

NI1 + NI2 + M, = COMPLETE SYSTEM MODEL

• F igure 8. Reduction of Model Order by Elimination of Unobservable
or Uncontrollable Subsystems
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( 2 )  S i n g u l a r  P e r t u r b a t i o n s

Neg lecting subsystems and system states which are

assumed to be insignificant to the control objectives being ad-

dressed frequently takes on ad hoc connotations , relying on the
exper ience and engineer ing judgmen t of the desi gner to effect a

suitable reduced-order model. A mo re systematic wa of reducing
the order of a large class of nonlinear systems , namely , those
which exhibit a wide dynamic range (i.e. “s lo w” and “fast ”)
of characteristic mode s , is provided by singular perturbation

the or V .

Simplistically, the singular perturbation method can be looked

upon as a ti me sc a l i n g p roce du re , which decouples the problem into

several problems of a lower order and addresses each of these at

an appropriate time scale. The method first defines the slowest

t im e scal e (or “free-stream ” or “ou ter ex pan s i o n ”) dynamics by

assumin g that all the faster dynamics are in equilibrium . Once

this ou ter so lu t ion is de te r m i n ed , the method then investigates

the faster time scale (or “boundary layer ” or “i nner  ex pa n s i o n ”)
p robl em as a cor rec t ion ab ou t th i s ou ter so lu t ion [ 7 J •

The me thod beg ins by grouping the states of the hi gh-ord er

model according to a small parameter c . This small parameter

may either occur naturally in the model (such as a short time

constant) or it may be introduced intentionally as an artificial

time-scaling narameter. The nonlinear state model (Eq. (1)) is

then partitioned into the form :

~1 f1 (x1, x2, u , t) (9)

~~~~ ~~1’ ~2’ 
u , t )  (10)

where the subscripts 1 and 2 refer to the states associated with

the slower and faster dynamics respec tively. The method then

19
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seeks a series solution in e about c 0 ;  thus c is set equal

to zero in Eq. (10) which reduces to an algebraic relation:

0 = £~ ~~i’ ~2’ 
u, t) (11)

This is equivalen t to the faster states x2 bein g in equilibri um .
Equation (11) serves as a condition which can be used to eliminate

~ertain of the faster states or certain contro l variables *

u from Eq. (9). For example , Eq. (11) can be solved for

= 
~ 

u , t) (12)

and Eq. (9) is reduced to the order of the slower states

= £l(~~l ’  -~-~~~l ’  u , t ) ,  U , t )  = f 1 (x 1, u , t ) (13)

The solut ion of the outer expansion (Eq . (13)) neglects the

dynami cs of x 1; the outer solution will typically have discon-
tinui ties (most noticeably at the initi al ti me) because of this
assumption that the states can change their values instan-
taneously . The boundary layer (or inner expansion) analysis exam-

ines fast phenomena in terms of the paramet er c and provides a
correc tion to the outer solu t ion , as illustrated in Figure 9.

* If the outer expansion is to be solved by op timi zatio n methods ,
there are cases where it is mathematicall y advantageous to
elim inate some of the elements of u and retain the same number
of elements of x— , to act as new control variables in the outer

solu tion . For example , pitch angle is a “fas t” state in the
long itud inal aircraf t dynam ics , relative to flight path angle ,
and ele va tor an g le may be the true control variable; the “outer
so lu t ion ” may well be expressed with pitch angle (the equilib-
rated state) , rather than elevator , as an effec ti ve contro l
variable . This procedure is particularly effective when the
elemen ts of u being eliminated appear linearly in the differ-
ential equa t i~ ns or cost functional (singular variational
problems) or when the elements of x, being retained as new

• control variables are constrained independentl y of u (state-
cons trained variational problems) [8].
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x
OUTER SOL UTION

A S

X ( t
f

)

4-U

Fi gure 9. Il lu st ration of the Singular Pertur bation Solution

The boundar y layer (inner-ex pans ion) i s exam ined by m a k i n g
the time transformation

T = t / E  (14)

In the “stretched” time scale -t , the origin al Eqs. (9) and (10)
take the form :

dx
= c f~ (x~~, 

~2
’ U , c i )  (15)

dx
= £2(~~l. ’ ~ 2’ 

!~‘ 
ci) (16)

p
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Again letting c approach zero , the slow variable x 1 (T) appears

as a cons tant* in the stretched time , and the behavior of the sys-
tem in the boundary layer is described by the reduced-order equa-

t ion :

dx 2 = £z (~ l’ x 2 (-r ), u(r), t) (17)

where is the average or nominal value of as defined by
the outer solution.

In summary , Eqs. (13) and (17)  in the development above

represen t the two separate reduced-order problems derived by sin-

gular perturbation theory from the original high-dimensional

probl em (Eqs. (9) and (10)). In general , the singular per turbation

approach is approxima te and the resulting des ign mus t be checked
for validi ty . For the case of linear sys tems , a number of ma the-
matical conditions and techniques have been formulated to “prove ”

val idity of the method under restricted conditions [7] . The

singular perturba tion methods as applied to aircr aft guidance
problems is discussed further in Section III.

(3) Modal Decomposi tion

For the case of linear time-inv arian t systems in

par t icular , a number of systema tic methods have been developed
which aim at decomposing the high-order system by identifying

its normal mode s and then retaining only those which are “dom-

inan t” in the system response , i.e., those which are in the

frequency range of interes t . Such approaches are termed “dom-
inant mode ,” “dominan t eigenvalue ,” or “pole :emoval” methods

[9 , 10].

* i.e., Eq. (15) reduces to dx 1/dt = 0.
p
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B a s i c a l l y , thes e me thods proceed as follows . From the pre-
vious developmen t , the linear , time-invariant system model can be
written :

= A ~x + B 6u (18)

Sy = C ox D Su (19)

This system of equat ions can be transformed to a canonical (block
di agonal) form by the transformation T , wh ich is an nxn ma trix
composed of the column eig envectors of A :

— 5x = T 6x~ (20)

S x =  A 6x~ + (21)

= CT 6x + D Su (2 2 )

where

It is an nxn block dia gonal mat rix

Sx is an nxl vector of modal coordina tes

is an nxm moda l con trol dis tribu tion ma t rix

Once in th i s  form , the characteristic modes of the ori g ina l sys tem
can be exam ined direc tly through the block diagonal elemen ts of
A . One can now partition A such that , for example , all “slow ”

or “dominan t” modes are grouped wi th part it ion A 1 and al l “fast”

or “removable ” modes are grouped wi th par t ition A 2 . The parti-

tioned problem is then:

[ox 1l [i~~~~ : Ti21[~I1
I - - -  I ( 23)

[°~2j [T21 T
22J L°~~~~

i
_
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[
~
] = [~H’~;] [~

] + 

[::-] 

(24)

wher e Ox 1 is of dimension qxl and Ox, is of dimension (n-q)xl.

Now if the “fas t” modes are assumed to be in equ i l ib r i u m ,

then the following reduction can be made : the states 6x are

assumed to be equilibra ted (i.e ., 0c = 0) and Eq. (24) reduces

to a qth order differential equation in and (n-q) algebraic

equa t ions in 6x~ . Thus , one can write:

= Ar ~~-i 
+ B r Su 2 5 )

[ o l  [c*1 [D*1
I ~I I  I~~

xl ~ 1 j O u  ( 2 6 )
[S~~j [Cr] 

- 

[Di 
-

where the reduced-model matrices are calculated as:

A = T 11~~1 Tj ~ ( 7 )

= T 11 ( ’ 1T 1~ T 12 A~~~7,  + E 1 ) ( 8 )

= T (‘9

21 11

= (T 21T1~~
T1, - T 2 1 ) A ~~~~2 (30)

C r = C
1 

+ C- , C~ (3 1)

D = D + C2D* t 32 )

Equation ( 2 5 )  is now the q th~ order reduced model ; the

states ~x, now are observed merely as additional outputs of the
p

2 3
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system (Eq . (26)) rather than as dynamic entities. The poles

associated with A 2 have essentially been “removed” from the

problem and only the “dom inan t” mod es A 1 are retained.

(4) Control-Sensitive Methods

The prev iously discussed methods have based their

order reduct ion decisions on the open-loop model; they ignore the

specific effects of the control inputs because these inputs are

not known a priori. Controllers designed based on the open-loop

methods (singular perturbations , dominant eigenvalues , etc.) be-

have as predic ted if the control bandwidth is sufficiently low

as to not alter the ori g i n a l  “s l ow ” and “fast ” designation of the

modes . However , if the control objectives require a hig h band-
width , those modes or igi nall y designated as slow may become fast

in closed-loop operation , and performance may deteriorate from

that predicted.

Consid erable recent effort [11 , 12] has been directed towards

developing model reduction methods which are “sensitive ” to the
cont rol ob jectiv es. Thes e me thod s , then , proceed to derive the

reduced-order model such that the optimal control policy for the

reduced-order model is the “best” suboptimal control policy for
the actual system. The model reduction and control design pro-

cedures are thus intertwined .

While these control-sensitive methods avoid the above-

men tioned problems with open-loop model reduction , they do incur
added off-line compu tational burden over the more standard tech-

niques. The imp lementational form of the resultant controller ,
however , compares favorably with the standard techniques. Further

discussion on these advanced methods is beyond the scope of this

repor t.

p
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e. Aircraf t State Models

Models which have been developed and refined (for ex-
ample by using the model reduc tion techniques described above)
for appl ication to the design of aircraft control systems vary

widely , ranging f rom s impl e po in t -m ass ~~~~~~~~~~~~~~~ r epres-
entations to sophi sticated high-order models which include de-

flections of the airframe. For control design purposes , the

designer typically attempts to arrive at the simplest model which

adequately represen ts the “control object” or “plant” being ad-
dressed . This will usually resul t in the least expensive desi gn
in terms of engineerin g effor t and also of imp lementation cos ts .
Moreover , s i m p l e r  models  f r e q u e n t l y  a l low the  des igne r  to a c q u i r e
more  ins igh t into the proc ess being contro lled , resulting f rom
the paring away of variable and functional relationships which

are of secondary  impor tance  to the achievement of the control

o b j e c t i v e s .  However , i t is good en g inee r ing pr act ic e to r etain
higher fidelity system models as well , and use these to check the

desi gn which was based on the simpler , mor e extensively approx-

imated models.

While an extensive summary of aircraft modeling activities

is beyond the sco pe of thi s r epor t , a d iscussion of selected mod-
eling technique s and approximations is presented in the Appendix ,

which comments specifically on six-degree-of-freedom aerodynamic

modeling (see also Ref. 4); the quasi-stead y approximation; and the

energy-state approximation.

p * The quasi-steady approximation neglects acceleration of the
a i r c r a f t .
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3. D E S I G N  APPROACHES

Man techniques have been developed to synthesiz e control

systems in general and aircraft guidance and control systems in
particular. These techniques are typ ically categorized as to

whether they treat linear or nonlinear systems , time-vary ing or
tim e-invariant systems , continuous or discrete systems , multi-
variable or single-input /single-output systems , etc . Addition-

ally, techniques can be compared as to the performance criterion

they are attempting to satisfy and the general structure of the

resulting controller design.

The ind iv~~ aal techniques can be organized into several gen-

er a l appro ach es , the following three of which will be discussed

in the remainder of this section: -

• Nonlinear Optimal Control

• Line ar Optimal Control (Quadratic Synthesis)

• Classical Control

Perhaps the key distinction between overall approaches to

aircraft guidance and control system desi gn is whether the design

approach requires a linear , time invariant system model. This is

the case with the bulk of the classical techniques and with some

of the model reduction procedures (modal decomposition) discussed

above .

Fortuna tely, for many problems of interest in aircraft

gu idance and control , a quasi-static approximation can be made.

This proceeds as follows . The time-vary ing state model after

line arization is given by Eqs. (7, 8), which are repeated below:

= A (t) ~x(t) + B(t) cSu (t) (33)

S~~~~( t )  = C(t) Sx (t) + D(t) Ou(t) (34)

p
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Often , the variations in the matrix elements are slow re lative to
the dynamics of the state variables themselves. In this case , a
common engineering practice is to approximate the time-varyi ng
linear system by a series of time-invariant system models , each
referred to a particular reference point or “fli ght condition. ”

Sepa r a t e  des i gn s a r e t h e n based  on each  of the  l i n e a r , t i m e -
invariant models , and the individual designs then aggregated in

such a way as to cover the fli g ht envelope , i.e., the full range

of f l i g h t  c o n d i t i o n s  addressed  by the desi gn. Typically, a suf-
ficiently general controller structure is selected so that only

the controller ’ s parameters or gains need be ‘ scheduled” or varied

as a function of tra lectory variables (e.g. , dynamic pressure ,
• Mach number , etc.) in order to effect the required aggregated

desi gn. Optimal control techniques , both linear and nonlinear ,

are not restricted to time-invariant systems , and consequently do

not rely on the quasi-static assumption. This distinction will

be evident in the remainder of this section.

a. Nonlinear Optima l Control

Presented here is a bri ef summary of the optimal control

des ig n app roach .  The summary a d d r e s s e s  d e t e r m i n i s t i c  o p t i m a l  con-
trol only, rather than stochastic control where random inputs and

uncertainties in the system parameters are allowed. Emphasis is

on the b a s i c  p r i n c i p l e s  and m o t i v a t i o n s  of the approach  as app l i ed
to the  a i r c r a f t  gu idance  and c o n t r o l  p r o b l e m .  R i g o r o u s  develop-
ment is beyond the scope of this report; for a more detailed

t rea tmen t  of t h e  s u b j e c t , the  reade r is r e f e r r e d  to R e f s .  6 , 13
and 14.

(1) System Model

The nonlinear system model addressed by the optima l

control approach was developed above and can be expressed in the

fo ra:

~ (t) f(x(t), u (t), t )  ( 3 5 )

2 8 
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with the initia l condition x (t0) g i v e n .  As w i l l  be seen l at e r , in
the solution to the optimal control problem , this state dynamic
relation is treated as a “constraint ” which must be satisfied at
every point along the solution trajectory .

(2) Performance Index

The crux of the optima l control desi gn approach is

t he  sp ecification of an appropriate performance index (or cost

functiona fl because the “optimality ” of the resulting design onl\

has meanin g when  referred to this performance criterion. The

performance index must be posed in a suitabl y concise form so

as to be economicall y solvable by mathematic al techni ques , vet

it must be sufficiently general to encompass a number and div-

ersitv of design objectives. Such ob jectives m i ght address the

time , fuel , or energy to reach a target condition , the terminal

errors , mean-squared error a l o n g  a path , etc.

The form for the per formance index w h i c h  has e v o l v e d  to

meet these broad and often conflictin g requirements is given by:

t 4:

J E : (x(t 0), x (t f) ,t0,t f ) + f  L~ x(t ) , u (t) , t )  d t  (3~~~)

The performance ~ndex . ~~~, is a s - : a l a r  f u n c t i o n  w h i c h  is de fined

such t h a t  low v alu es of  -j (the “cost ”) indicate “good” perform-

ance and hig h values of J indicate “bad” performance. As can

be seen in the above expression , J incor p orates an requirements

on the m l :  ial or terminal state by means of the penalt y function

and an~- state-vari able constraints , control-

variable constraints , and op tima litv criteria in t h e  f u n c t ion

L~ x i t) ,u (t) ,t) , which accrues penalt y o v e r  the ent ire time in-

terval of interest [t 0,t f].

Table 1 illustrates the generality of the performance index

form ~Eq. (3o)) for expres sing the control object ives of several

• 
sim p le a i r c r a f t  guidance and control problems. ~t h e r  such examp les

arr p r u v i d c d  in Section I II .
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T A B L E  I
FX:\MPLES OF T I l E  G I I N E R A L  I T  OF lift PI~l~l~OR~IANC [

I N D E X  S T R U C T U R A l .  FOR M

J = ~~x ( t 0 ) I x ( t f )~ t0~ t f~ L~x(t),u(t),t~dt

PROBL EM J 

tf 

to 

L E XAMPLES

Minimum Time J - t(t0 
= 
f 

dt 0 1 . Intercept of at-
to tacking aircraft

and missiles
• Slew ing-mode opera-

tion of radar or
gun system

Minim um “weight- J = [x (t f)-r(tf))
T H x(t f)) 0 • Ball istic missile

ed ’ ~by H) ter- control
m i na l  errors ~~. • Rendezvous for

lX Is t
f~~~~~~¼ L

f
I J  cargo delivery

tf
M inimum “weight- J = u ’ (t)Ru (t)dt 0 L (u(t)) • Minimum rate of
ed’ (by R) con- fuel consumption
trol effort 0 for rocket engine

tf T
Optimal track- ~=( [x(t)_r ( t)] Q 0 L (x (t)~ • Slew ing of radar or
ing of refer- 

— gun to track target
ence r , wei ght- • Maintaining aircraft
ed b y Q  [~ (t)-r(t)]dt near reference path
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( 3) End Con d it ions

To complete the formulation of the optimal control
pro b lem , one must consider the end conditions required to be met
by the problem solution. In general , the initial and final states
(end states) and the initial and final times (end times) can be
defined by a vector of algebraic expressions:

~- (x (t 0) ,x(t f) ,tQ ,t f
) = o (37)

Any of t h e s e  end s t a t e s  and end t i m e s  may be c o m p l e t e l y  f i x e d ,
comp letel y free (i.e. , unc onstrained) , or related to other end
conditions * (i.e., cc-rtain relations i- i ps between the states and
times must be satisfied at the end conditions ).

(4) Problem Formulation Summar~

The optimal control problem may now be stated

simplistically: Find the control u(t) which minimizes the per-
formance index J (Eq. (3b)) and conforms to prescribed terminal

constraints ~ (Eq . (37)) while satisfying the system dynamical

equations (Eq. (35)).

Before the problem formulation is comp lete , one must consider

the assumptions which may be permitted in order to arrive at its

solution. Typ icall y , these assumptions relate to the differentia-

bility of the functions t , L , f , and ~ and to the boundedness

of the states x and controls u. For the remainder of this

discussion , it will be taken that all necessary assumptions for

solution are met and that the states are unbounded but the con-

tro ls are bounded. The allowan ce for hounded rather than un-

bounded controls is of importance , since most phys ica l processes

contain controls that are hounded. Some aerospace vehicle examples

P * Another way of saving this is that the end conditions are
located on a hypersur face or manifold.
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are : m i n i m u m  and m a x i m u m  t h r u s t  of a propulsion system , minimum

and maximum deflection of a thrust vector , maximum available con-

trol power , maximum thrust vector rotation rate , etc.

(5) Solution Techniques

Most cf the multitude of solution techni ques which
have been developed to address the optimal control problem can he

placed in the following two categori es :

• Calculus of variations techni ques

• Numerical techniques

Calculus of  variations (notably the Pontryag in minimum principle

[15]) techniques can be used to obtain a set of analytic expres-

sions which constitute a set of necessary conditions for optima l-
i ty . Numerical techniques are inherently iterative , hut can he

u sed to con v e r g e  on th e optimal control t ime function and associ-

ated optimal tr ajectory cver the time interval [t 0,t f j .

rhere are many and varied numerical iterative techniques

( e . g . ,  t h e  g r a d i e n t  m e t h o d  and q u a s i - l i n e a r i z a t i o n  m e t h o d , R e f .  14 ,
Chapter 7; differential dynamic  p r o g r a m m i n g ,  R e f .  16; among o t h e r s)
further treatment of t h e se  is beyond  the  scope of t h i s  r e p o r t .
Because of its widespread use and the insight it lends into the

nature of solution of the optimal control problem , however , the

“minimum principle ” approach will be summarized below.

(6) M in imum Principle

Solution by the minimum principle involves first

augmenting the performance index by the mathematical technique

of adjoining the constraints (Eqs. (35) and (37)) to the perform-

ance index J. This effectively converts the original constrained

pro l leir . to an unconstrained problem of higher dimension. The

“incr ea se in d imens ion ” is due to the use of Lagrange multiplier
• (adjoint) vectors v and A C t). The adjoined performance
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J* index i s :

= ~ + ~T ~ \T (f~~~) dt (38)

w h i c h , using Eq. (36), can be w r i t t en :

= + ~T +J~ (L  + xTf - 1T 
~~ d t

The a d j o i n e d  p e r f o r m a n c e  index  may f i n a l ly  be w r i t t e n  in t h e  mor e
conc ise f o rm:

= ~ + (Fl - \T ~) dt (40)

by d e f i n i n g  the  Mayer  f u n c t i o n a l :

~~( X ( t 0 ) , X ( t f ) , t 0 , t f ) = ~~~X ( t 0 ) , X ( t
f ) , t 0 , t f~

+ ~ T 
~~x(t0),x(t f),t0,t f) (41)

and the Hamiltonian:

H (x(t) ,u(t) , \(t) ,t~ = L (x(t) ,u(t) ,t)

+ f ( x ( t ) ,u(t) ,t~ (42)

The m inimum principle now determines the control which mini-

mizes 5* of Eq. (40) by examining the variation in J~ (i.e., ~J*)

due to variations in the control (5u) . An extremum (i.e., a

minimum under the desired circumstanc es) is reached where ~J* = 0

p
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for arbitrary S S U .  This requi rement leads d irc ct l i i ’~ef . 14 ,
Chapter to the Euler -Lagran ge equations:

TI = -
~~~~~~~~~~ (43)

= 0 ~44)

Equation (431 is a l s o  called the “adjoint ” or “co-state ” equa-
tion , since i t  desc r ibe s t h e dynamics of the adjoint (or co-state )
vector \ ( t ) .  The optimal control is found from Eq. ~4~~)
if the control set is unbounded (unconstrained). For a restri cted
control set , alternate procedures must be used to find the control

.1~ich m iniri i:es the Harniltoni an* (Ref. 17 , Section 4.3 .

The minimum principle also determines expressions for boundary

or t r a n s v e r s a l i t v  c o n d i t i o n s  n e c e s s a ry  in the total solution.

These expressions v a r y  as a f u n c t i o n  of the  “ f r e e d o m ” in t h e  e n d
conditions for x and t , as specified in the problem formulation.

For examp le , if there are no terminal constraints (;~~t f) 0) and

the terminal time is a fixed rather than free value , the trans-

versality condition is:

~ (t ) = 
(~~~~~~~ 

)

T~

— t t f

A summary  of some of t h e  more common end conditions and the corres-
p o n d i n g  t r a n s v e r s a l i t y  c o n d i t i o n s  a re  i l l u s t r a t e d  in Table 2.

(7) Comments

The m i n i m u m  principle approach , while it yields

valuable insight into the optimal control problem by pro v id ing

anal ytical expressions for optimalit v , is not without practical

d i fficulties. Many of these difficulties stem from the usual

• * i.e ., Eq. (44) will yield an expression for the control which
minimizes the 1-lamiltonian if the control set is unbounded.

34

‘p



TABLE 2
ILLUSTRATION OF TYPICAL END CONDITIONS AND

ASSOCIATED TRANSVERSALITY EXPRESSIONS

~ SCRIPTtON ~NO CO MOI T IO MS TRANSVERSAL !~~ ~~~~~~~~~~~~~~~~~~~~~~~~

F ix e d  t

Fix ed ~~ - 
- 

~~x e~ ~~~~~~~

to

~~~~~~ 
- 

- .
Sta te  — 

_ f _

Free ~~( t~~ ;

~~~ t )

Fixed
0 X f 1 .y. — —

• • L 

t f  

•

F ix e d  ~ k t ~~)

t
_____________________ ______________________ 

t o

~i t ~ C I t  -‘ N
~e’~,,ineT ~‘ i,,e Flxpd

~::~~ 

~~~ ~~ 
. .

o c c u r r e n c e  of “ s p l i t ”  b o u n d a r y  c o nd i t i o n s  of the differen tial

equations which must be solved to obtain the optimal control. This

two-point boundary-value problem is illustrated by summar izing the

above development as follows : To find the optimal control , one mu st

solve the following differential equations:
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= f(x,u ,t) (46)

1’ T I
= - — - -

— 
— 

— 
(4

where u (t) is determined by

T
I 3 L ~0 = ( - 5

~~) A~~~~ (48)

s u b j e c t  to the boundary  condi tion s , f o r  exam p le ,

x(t0) given (~4-~))

~(tf) (
~~~
)

T

Equations (49) and (50) constitute the sp lit boundary conditions.
In general , numerical methods or approximate anal ytical methods
mu st be used to solve such a problem , namely , to integrate Eqs .

(46) and (47) subject to the boundary conditions (49) and (50).

The solution to the nonlinear optimal control problem (found
either analy tically or numeric ally) is usually expressed simply as
a function of time. Thus it can be pre-computed off-line , stored ,

and retrieved on-line and applied as necessary . Consequently, the

op timal con trol 
~~~~

(t) is an “open-loop ” control. It is based

entirely on the a prior i model of the system (Eq. (46)); the
optimal control does not require (or, more to the poin t , admi t)

measuremen ts of the state at any time other than the initial con-

di tion x(t0). As a resul t , the optimal control is no t sensi tive
to deviations of the actual state from that predicted by the model ,

which may contain errors or approximations. Moreover , the optimal

• con t ro l  is not  s e n s i t i v e  to unmodeled d i s t u r b a n c e s  w h i c h  may
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further drive the system states away from their modeled behavior.

This open-loop nature of the optimal control is illustrated in

F i g u r e  10.

One way of dea l i ng  w i t h  these  p r o b l e m s  is to c lose  t h e  loop
in e f f e c t  by re-computing the optimal control periodicall y , using

the current best estimate of the state (derived from the f e e d b a c k
sensors) as the initial condition for the most recent solution .

This technique , while providing a closed-loop feedback control ,

can be extremel y resource consuming, dep ending on the complexity

of the control calculation and the repetition frequency required

to satisf y closed-loop control objectives.

Under certain circumstances , it is possible to derive a closed-

loop feedback form for the optimal control la’~. directl y , i.e., the

control u can be expressed as a function of the state x :

U = U I X )  (51)

In this way, t he  c u r r e n t  b e s t  e s t i :r : at e  of t h e  state can be used to

c a l c u l a t e  t h e  c u r r e n t  b e s t  v a l u e  of c o n t r o l  to  be applied , as

i l l u s t r a ted i n F i g u r e  11. The m o t i v a t i o n s  f o r  t h i s  s t a t e  feedback
control law and some conditions under which it can he obtained are

d i s c u s s e d  in  t h e  nex t  s e c t i o n .

b. Linear Optimal Control

A l a r g e  and important class of problems for which an opti-

mal feedback control law , u = u(x) , ca n be f ound  d ir ect  lv is that

characterized by a linear system model and a performance index whose

elements are quadratic forms . Under these conditions , a linear

feedback control law can be found ; i.e., the variational control

~u is a linear function of the variational state ~x:

~u (t) = -K(t ) ~x(t) ~52)
p
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where the linear gain matri x K(t) can be pre -computed and stored.

The on- l ine , instantaneous control is calculated by retrieving the

current va lue  of K ( t )  f r o m  memory  and merely multi p l y ing by the

current best estimate of the state x. The met hod of deriving this

optimal linear feedback control law is called “linear-quad ratic ”

d e s i gn or “ q u a d r a t i c  synthesis .”

CONTROLLER i~4 PROCESS _____-
H ~~0PENS AT t
H ° H

Figure 10. Optimal Open-Loop Control — 

~~ 
I s Calculated

a priori and Stored

u (t) 
_________x ( t )

CONTROLLER I~~ PROCES S
• ~~~~~~~~

- 

U

Figure U. Optimal Closed-Loop Control — U Is  Calculated
f rom S ta te  Feedback Opt

p
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(1) Quadra t ic Performance Index

The p e r f o r m a n c e  index to be m i n i m i z e d  in o rde r  to
d e r i v e  the o p t i m a l  l inea r  feedback cont ro l  law (E q .  ( 5 2 ) )  is g i v e n
by the following func t ion al fo rm :

1 T 1 ptf TJ = ~óx (tf) Sf 6 x ( t f ) + 
~~ 
j  

(~~~~ 

( t )  Q(t) ~x(t)
t o

+ 6UT(t) R(t) 5u(t))dt (53)

where

Sf is an n x n  weig h t i n g  m a t r i x  on the  t e r m i n a l  s t a t e
er ror

Q ( t )  is an nxn  we ig h t i n g  m a t r i x  on the  along-path state
er ro r

R(t) is an mxm weig hting matrix on the control deviation
f rom nomina l

S and Q must be at least positive semi-definite and R must be posi-

tive definite in order to obtain the desired form of the control

law . Q and R can be func t ions  of t ime ; a l l  m a t r i c e s , if t h ey
depend explic itly on system states x (t) or controls uft), are

evaluated at the reference values x0(t) and u0(t).

There are two compelling reasons for choosing the quadratic

form for the performance index . One of these , as will be seen
shor t ly , is that the mathematics of solving the split boundary

condi tion probl em is grea t ly simp l ified . A more sa ti sfying

reason , however , derives from the mode l linear i z ati on p roc ess as
presented previously. As shown in Eqs. (s) and (6) and repeated

p
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below , the linearization process entails expanding the nonlinear

model in Taylor Series about the reference values x and

f (x (t), u(t)) = f ( x 0 ( t ) ,  u 0 ( t ) )  + ~x ( t )

+ óu (t) + 
~~ 

(5x (t), ~u(t)) (54)

~ (x(t), u(t)) = &(x0(t), u0(t)) 
+ äx(t)

+ 
~~~~ 6u (t) + ~ (~ x(t), ~u(t)) (55)
3u — —o — —

— o

The linear model retains the linear terms and neglects the higher-

order terms ~ and 
~ 

in the expansion.

I f  these  h i g h e r  order  t e rms  are not  forced  to r ema in  smal l ,
however , the validity of the first-order linear model can be

jeopardized. Fortunately, it can be shown [5] that minimizing the

• quadratic performance index is equivalent to minimizing the magni-

tude (norm) of the higher order terms integrated over the time

period of interest. Thus , the perturbation control 5u based on the

the quadratic performance index is the control which ensures the

best linear model of the system being addressed. This is desirable

because the derivation of the optimal per turba ti on con t rol is bas ed
on the l i n e a r  model i t s e l f .

I
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( )  L i n e a r - Q u a d r a t i c  P r o b l e m  and I t s  S o l u t i o n

In summary , the  l i n e a r - q u a d r a t i c  p r o b l e m  is to f i n d
t h e  p e r t u r b a t i o n  c o n t r o l  ~u wh ica m i n i m i z e s  t h e  p e r f o r m a n c e
index given by Eq. ( 53 )  f o r  the  l i ne a r , t i m e - v a ry i ng s y s t e m

óx (t) = A (t)óx(t) + B(t)óu(t) (56)

The initial condition x (t0) is given , the final time is fixed at
the value t f~ and both the perturbation states and perturbation
controls are unconstrained.

Solution of the linear-quadratic probl em by the backward sweep
method is well known (Ref. 14 , Chapter 5; Ref. 17 , Section 5.1).
The solution is:

~u(t) = 
- K (t) óx(t) (57)

where the mxn feedback gain matrix is given by :

K( t ) = R 1
(t)B~~(t)S(t) (58)

and S ( t )  is the R i c c a t i  m a t r i x , w h i c h  i s f o u n d  by solution of the
R i cca t i  d if f er e n t i a l  e q u a t i o n :

S ( t )  = - S ( t )  A ( t )  - ~T ( t )  S ( t )  - 
Q (t )

+ S ( t )  B ( t )  R~~~( t )  B T ( t )  S ( t )  ( 59)

The Riccati equation is i n t e g r a t e d  b a c k w a r d s  in t i m e  f r o m  the
terminal boundary condition:

S(tf) = Sf (bO)

I m p l e m e n t a t i o n  of t h i s  s o l u t i o n  ( E q s .  ( 5 7 )  t h r o u g h  ( h O ) )
can he q u i t e  s i m p l e  in t e r m s  of on-line computational requirements.

Often , only Eq. (5) need be computed on-lin e . T h i s  is  t h e  ca se
when the references ~~ (t) and ~~~(t) are known for nil ti me in the

p
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interval of interest (see Figure 12). It is also the case when

none of the matri ces involved in the solut ion (namely , A , B . Q,
R and S f ) depend  exp l i c i t l y on the  r e f e r e n c e  t r a j e c t o r y  and c o n t r o l .

u (t) .~ (t)

~J COM PUTER ~ -

I MEMO RY I I STORED FROM
OFF-L INE
~~M PU TAT ION S

-

~

- 

+ ‘u (t) 
-~ (t) 

Ht ) - 

~o ruT ~~T:~~ ,s
PH Y S 1C~ L ~ 

/

PROCESS

F i - ~u r e  12 . I l l u s t r a t i o n  of M i n i m a l  On-Line Computatio nal Require-
ments When Reference State and Reference Control Can
Be P r e - C a l c u l at e d

Thi s  w i l l  not  alwav~ be t h e  case , howev er , and the designer is left

w i t h two m a i n ch o ices :

1) R e - s o l v e  o n - l i n e  f o r  t h e  g a i n  m a t r i x  (E q s .  58)  and
( 5 9 ) )  p e r i o d i c a l l y  as r e f e r e n c e  v a r i a b l e s  c h an g e ;  or

(2) Solve the problem off-line for a number of reference
condition s and stor y K in a “schedule ” as a f u n c t i o n  of
t h e s e  r e f e r e n c e  c o n d i t i o n s ; o n - l i n e  c o m p u t a t i o n  t hen
i n v o l v e s  l o o k i n g - u p  the  p rope r  g a i n  f r o m  a t a b l e * (per-
hap s  a m u l t i - d i m e n s i o n a l  t a b l e )  and m a k i n g  t he  m u l t i p l i -
cation of Eq. (57).

* This latter approach is similar to the quasi-static gain-
• schedul ing techn ique used frequently in classical designs.
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Various trade-off studies can be performed to determ ine which of

these choices results in the most favorable combination of perfor-
mance and computational load.

(3) Quadratic Synthesis

Quadratic synthesis refers to the process of formulat-
ing, solving, and implementing the linear-quadratic design. Act-
ivities which the engineer may have to perform in this overall de-
si gn are listed in Fi gure 13. Also shown in the figure are variou s
iterations which may occur in the design process to arrive at the
proper final compromise between performance capabilit y and imple-
nentational cost , in terms of eng ineering effort and computational
hardware and software requirements.

The main thrust of quadratic synthesis , however , is the selec-

tion and refinement of the weighting matrice s Sf~ Q(t ), and R(t) in

the performance index. The selection of these matrices determines

the character of the closed loop control , much as frequency response

shap ing can determine the character of a classical design. Simi-

larlv , the refinement of the weig hting matrices is an iterative

process , requiring a certain amount of experience and engineering

judgment. However , the weig hting matrices provide a great deal of

• insig ht into the desi gn of complex , coup led . multivariab le systems .

As .i result of this insight , many ‘ rule of thumb” [5] have evolved

for the desi gn of large classes of aerospace systems. A few of

T h e s e  are summarized below:

1) Often a good choice ( a t least initiall y ) ot the w e i g ht-
i n g  matrices is a diagonal form where the elements along
the diagonal are inversely proportional to the square
of the maximum desir able value of the quantit y in
question ; or , mathematically, if q

~~- . r~~
. and s~~. are

the elements of Q, R and S f : -~ -~ -~

~~~ = l/ [X max (t)J
~ 

if i = i ;  0 if i 
~ 

j  (hi)

— 
,. 

~~~— -~~~ -



F 
_ —- -

~~ = l/ [u (t)]~ if i = i ; 0 if i 
~ i (62)

= 1/ [Xmax (t f)l~ 
if i = j; 0 if i j (b3)

PROBLEM FORMULAT iON

• Derive non-linear system model (Eq. (46 )
• Determine reference trajectory and con trol

— • Derive linearized system nodel (Eq. (56))
• Select weighting matrices for performance index (Eq. (53))

PROBLEM SOLUTION

• Solve matrix Ricc ati Equation (59) to obta in feedback gain
matrix K ( t )  ( this may involve numerical integrat ion)

• Evaluate performance of optima l gain (either analyt ica l ly  or
in simulation )

DES IGN IMPLEMENTATION

• Anal yze trade-offs between performance and v a r i o u s  des i gn

_____ 

approximations used to reduce implementation costs
• Evaluate implemented design in simulation
• Install final design and perform checkout and operat ional

test i ng

Figure 13. Typical Design Activities in the Formulation , Solution ,
and Implementation of the Linear- Quadratic Desi gn

•
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Anothe r candidate initial choice , one which relates
approximately to minimizing the second variation in J ,
i s :

D 1 1
Q (t ) — 1b4 )

~
2H

R ( t )  — (65)

Sf 
— —-----

~
-----

~
- ( b t~)

~ t

where is the Mayer functiona l (Eq . ( il )) aad ii is the
Hami ltonian Eq. (4 )) and the sub script (0) refers
to  t h e  r e f e r e nce  t r a j e c t o r y

.) The larger the n o r m  of the matrix Sf (i.e. , I s+- )
~ thelarger the gain m atrix K(t ) at times near the final tine.

Tha s , as the fina l t in e ippro ache— , cert ai n elem ents of
the control vector n a y  g e t  ( u n a c c e p t a b l y )  large. L~ne
way of dealing wit h  t h i s  problem i s  to  g r a d u a l l y  b r i n g
jQ (t)~~~, whi ch penalizes stat e dev ia tions along the

path , to  a m a g n i t ud e c o m p a r a b l e  w i t h  w h e n  n e a r i n g  t f .

3) The l a r g e r  I IQ (t ) I , the la r ge r the g ain matrix K and
the shorter the time p e r  iod i n  - % h i  ch  s t a t e  p e r t u r b a t i o ns
ar e  r e d u ce d  t o  small values. In effect , in cr ea sin g
;Q (t ) I increases the band w idth oi the clo- - e J- looI

syst em.

The lar ger I R t ) , the smi I Ic r the gain nat r x ~ and
the sloi ..er the system response.

5) Fre quent ly . the pert arH:i t ion sta te vector contains
v i  r i ih i cc a n d  a 1 so t h e i r  t inc der iv at i yes e . g . pitch
angle and p it ch rat e ) . In such a c:i Sc , pena i i  z n g  by
Q the p i t c h  ang le only and  n et i t s ra te ot~ chan ce ~ i l l
l e i d  to  a m o r e  os c i l l a t o r y  r e s p o n s e .  P e n a l i z i n g  the
p1 t~~h r it o ilso will reduce oversne ets m d  load to a
le ss oscill a tory respon se . This is •i kin to increasing
t h e  d a m n i n g  c o e f f i c i e n t  of  a -~c c o n d - o r d e r  s y s t e m .

p
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c . C o m p a r i s o n  to  C l a s s i c a l  “ I c t h o d s

A s m e n t 1 oned p r e v i o u s l y ,  c l a s s  i c a l  m e t h o d s  n o r m a l l y

a d d r e s s  o n l y  a subset o 1 t h e  sy s t e m s  p r e v i o u s l y  c o n s i d e r e d , n a m e l y ,
t he  s u b s e t  known  as l i n e a r , t i m e - i n v a r i a n t  sy s t e m s .  Such systems

a r e  cha r a c t e r i z e d  by c o n s t a n t  - c o e f f i c i e n t  d i f f e r e n t  i a l  e q u a t i o n s .
This permits the f o r m a t i o n  o f  o u t p u t / i n p u t  t r a n s f e r  functions and

the t runs form anal y sis of such relations by frequenc y domain meth-

ods (Bode 1)iograms , Nichols ’ Charts , etc. ) . \~hen  ap p licable , such

methods yield valua b le i nt o rmn ation about the cha ra cter of the sys-

tem . w h i c h  can be used to eval uate an- ! improve cont rol syste m

desi gns . Even if a linear , t i n e - i n v a r i a n t , quadrat i c s y n t h e s i s

method i s applied to t h e  design of  p a r t  i c u l a r  c o n t r o l  S y s t e m , L t

is good en gin eering pract ice to check and anal y ze the res u lting

d e s i gn u s i ng  c l a s s i c a l  m e t h o d s  i~he r e v e r  p o s s i b l e .

Fhe remainder of this section c o m p a r e s  various a s n e c t s  of

the cla ssical desi gn methods with corresponding elements of the

optimal contro i approach.

(1) C o m p a r i son of  S st em S t ruc t ure

O p t i m a l c o n t r o l  theory distinguishes between t h e  con-
trol u , state x , and measurement v of a linear system . Ag a in ,

the s~ stem parameters may be time varying. Classical control theor y

distinguishes only between the control (input) u and the measure-

ment (output) ~ of the l i n e a r  system . The system n irame ters are

constant. An illu strati on of the two basic system structures is

provided in Figure 14.

(2) Comparison of Design Criteria

°ptima i control theory minimizes an index of system

oerformanc e in the time domain. The index contains both const ant

and ti n e-varying weig hting matrices that , to a large extent , can he

chosen freely . Th e elements of these matrices have a rather di rect

16
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F i g u r e  14. C o m p a r i s o n  of the  Bas ic  Sys t em S t r u c t u r e s  of
Classical and Optimal Control Theory (Example:
S i n g l e - I n p u t/ S i n g l e - O u t p u t )

physical interpretation. The final time of the (transient)

response may be prescribed arbitrarily, and re qu i r e m en ts on the
final state can be incorporated.

Classical control theory defines the “de si red ,” f i x e d ,

closed-loop pole locations , associated with “desirable ” system

response. However , the relation between closed-loop pole loca-

tions and system response becomes more obscure as the system

becomes more comp lex (multi-input/multi-output). Also , the rela-

tion between closed-loop pole locations and system response is not

uni que : the location of the closed-loop zeroes is also of impor-

tance. Final time of the response is fixed at infinity, since the

main interest is really in steady state behavior [13].

(3) Comparison of the Control Law

Optimal control theory, as app lied to the quadratic

performance index , leads direct iv  to  a linear feedback law with

time-v a r y in g gains. In general , all elements of the (n-dimensional)

state vector ire t o  be fed hack to all controls. The time-varyin g
p
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gains lead to time-varying locations of the closed -loop poles and

zerocs.

Classical control theory assumes control to be of the linear ,

outp~~ - feedback type , i.e., the elements of the (rn-dimensional )

measurement vector are to be fed back. The gains are assumed to

be constant. They are chosen such that the “desirable ” closed-loop

pole locations are obtained. If this objective cannot he met , then

“compensation techni ques ” (cascade compensation; feedback compensa-

tion ) are used to help achieve it.

The classical approach’ s use of the rn-dimensional (external)

measurement vector for feedback instead of the n-dimensional

(internal) state vector leads , in general , to less satisfactory

response , since the measurement v e c t o r  c o n t a i n s  l e s s  i n f o r m a t i o n

about t h e  s y s t e m  than does the full state estimate. However , a

si gnificant computer resource is required to “estimate ” the full

system state from a reduced number of noisy measurements. For-

tunat elv , modern airborne computing systems are w e l l  c a p a b l e  of
this state re-construction (by Kalman filter ’ s , for example); this

fact helps make the full state feedback design viable.

0
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SECTION III
PATH CONTROL SYSTE M DESIGN

1 . INTR ODUCTI ON

A number of aircraft guidance and contr ol problems have been
addressed by the desi gn approaches summarized in Section II .

Typically, the overall aircraft guidance and control task is

broken down into a number of suhproh lerns (navigation , horizontal

guidance , stabilit y augmentation , etcj and each of these ad-

dressed by desi gn techni ques which are best suited to the charac-

teristics and desi gn objectives of the p a rticular sub pro hl em.

The diverse subsvs tern desi gns are then integrated , sometimes
in a r a t h e r  ad hoc  m a n n e r , to  arrive at t h e  t o t a l  i i r c r a f t  guid-

anc e and control system desi gn.

i d e r e  is good r e a s o n  f o r  t h i s  p r o c e s s  o f  I e c m n p o s i n g  t h e
l a r g e , c o m p l e x  p r o b l e m  of  guid ance and c o n t r o l .  P r i m a r ~~lv , t h e
high d im e nsi onali t y and high degree of nonlinearit y exhi b ited
by t h e  o v e r a l l  p r o b l e m  does  n o t  permi t d~ rect solution for an

imp l em entahi e design. Moreover , the ‘.:despread success in

d e v e l o ~~1ng p r a c t i c a l  f l i g h t  c o n t r o l  cy stems by i n t e g r a t i n g  t h e
i n o i v i d u a l  s u b s y s t e m  d e s i g n s  i s  s t r o n g  i n d i c a t i o n  t h a t  b lind

a p p l i c a t i o n  of  any  p a r t i c u l a r  t e c h n i ~~ue to  t h e  : u i l — d i i n o n s ~~o n a l
p r o b l e m  is not warranted. However , it is im portant that the

d e s i g n e r have a f i r m  u n d e r s t a n d i n g  of  the int er r e la t~ ons~i ip

of  t h e  s u b s y s t e m s  ~h t l e  he is desi g ning an~’ particul a r one.

In  t h i s  ~ av , ov e r ~~i g h t s  mod i n c o n s i s t e n c i e s  are mini m ized and the

des i g n i n t e g r a t  ion  p r o c e s s  s h o u l d  p r o c e e d  S m c c t L 1 I v

To a s s i s t  i n  ; ) r ) v l u i n g  t h i s  i n s  i g h ~ i n t o  t h e  i n t e r r e l a t i o n -
s h i p  of g u i d a n c e  a n d  c o n t  r o l  s u h s v c  t err s . t h i s  ; cc or d e f i n e s
a co n c e p t  u: m 1 f r a m e w o r k  b y  wb  i c h t o  ir ~ t i on he  p a t h  con t ro 1

- r o h i o n  fo r  d i scussion and a n a l y s i s .  The ~~~ m i m n  p o r t : t i o n s

0
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of this framework , reference generation and pe rturbat ion con-

tro l , are then discussed separate ly .

2. SYSTEM PARTITIONINC

Man aspects of aircraft guidance and control can he dis-

cussed within the path control framework illustrated in Fi gure

15. This conceptual diagram identifies two major partitions :

1) the reference generator , and 2) the pertu rb ation co r t ioll e r. The

reference generation function determines the “nominal” state

(trajectory ) and control ~hic h satisf y the outer-loop contro l

objectives (guidance , performance optim i zation , etc.). The

pertur bation control function attempts to maintain the actual

state near the nom inal ~“departure prevention ”) while sinu l-

taneou slv satisfying other inner-loop control ob jectives

(disturbance rejection , stabilit y augmentation , etc.). The
perturbation control is then added to the nominal control to form

the total control , which is sent to the actuation system. 

I 
- -o~ i

L

Figure 15. Generic Block Diagram of a Path Control System
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The bas is for the struc ture illustrated above lies in the

nature of the linear iza tion proc ess (a s discus sed in Sect ion
II) and in the related concept of “nei ghboring path” optima l

con t rol (Ref.  14 , Chapter 6). In this concept , the reference

solu tion addresses the full-scale , nonlinear system model to

obtain the optimal “open-l oop ” control and associated optimal

trajectory , which satisfies outer-loop control objectives . The

perturbation control is then derived through linearizin g about

this reference solution and determinin g the linear feedback

gains which minimize deviations from the reference.

In pr ac t ice , the “pure ” optimal path and nei ghboring

optimal path problem is not generally addressed in full dimen-

s ion . Rather , many simplifications and engineerin g approxima-

tions are made in the design process. These approximations

lead to a suboptimal solution to the overall problem. Moreover ,
such approximations frequently obscure the interface between

the two conceptual partitions of reference generation and per-

turbation control. For instance , the reference solution to

the nonlinear , outer-loop problem (e.g. minimum time to climb )

may make approximations which neg lect fast dynamics (e.g.

pitch angle and rate) and treat certain fast-varying system

s t a t es ( e . g .  f l i g h t - p a t h  ang le)  as “ a r t i f i c i a l ”  c o n t r o l s .  The
o u t p u t  of t he  o u t e r - l o o p  p r o b l e m  s o l u t i o n  now consists of

some of the  reference states (e.g. altitude and velocity) and

“artificial” control variables (e.g. fli ght path). Before

thi s problem can be cast in the path-control framework (Figure

15) , nominal values must be computed for the remaining refer-

ence states and the true reference control (e.g. a “trim ”

elevator and nominal thrust history which arc consistent with

the reference velocity must be computed). Often it is con-

venient to locate such computations (e.g. elevator trim) with

the inner-loop control functions , i.e. within the perturbation

p
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control partition. Notwithstanding such exceptions , the path-

control fo rmal structure defined above is a valid and hel p ful

context w ithin which to view the desi gn of the overall system ,
as demonstrated in the remainder of this section.

3 . REFERENCE GENERAT ION

As defined above , reference generation addresses outer-loop

control objectives , of which there are two general categories:

(1) performance optimization and (2) guidance. The distinction

between these two classes is that performance optimization is

not generally concerned with geograp hic position , but rath er

with the time -optimal or fuel-optimal maneuvers or transitions

between energy states . Guidance , on the other hand , is pr imari ly
concerned wi th position attainment , and performance optimization

is viewed as a secondary obj ective.

Many types of performance optimization are of major signi-

ficance only for supersonic or fi ghter aircraft. Such problems

include minimum-time and minimum -fuel climb s , dives , and turns .

A survey of literature describing the application of optimal

control theory to selected performance optimization problems

is presented in Table 3. Such performance optimization problems

are not considered further in this report in their “pur e” form ,

but only as performance optimization relates to optimal guidance.

For transpor t a i rcraf t , the gu idance  prob lem is conven-
tionallv divided into the horizonta l and vertical planes.

Horizon tal guidance addresses the synthesis of trajectories

which overfly prescr ibed waypoints or avoid haz ardous geogra phic

reg ions , both without and with control of the time at which variou s

points on the trajectory are reached (time-of-arrival guidance) .

Vertical guidance is concerned with achieving time-optimum or

fuel-op timum altitude /range profiles , with avoiding vertical

p
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T\BLE
SURVEY OF A I RCRAF T P ER F ORNA NCf~ O1~1’ I MI A U I  ON L I  TER: \ TII R I i

REFERENCE PROBLEMS ADDRESSED COMMENTS

18 • Minimum time to • Uses energy-state approximation and
c l i m b  (change energy energy manajement techniques
leve l )  

• Comparison of approximate and near
• Minimum fue l to exact solution

c limb 
• Numerica l resul ts for two represen-

• Maximum range tative supersonic aircraft
profiles

19 • Minimum time to gain • Compares singular perturbation
energy approach to conventional energy

- management methods
• Min i mum fuel to gain

energy

20 • Minimum time loop • Four -dimensional state model
maneuver  

• Calculus of variations approach

• Numerical results for typical high-
speed jet aircraft

21 • Three-dimensional • Singular perturbation approach
maneuvering—- 

• Cons ider aircraft constraintsminimum- time (thrust maximum , q -l im it , etc.)transition from -

initial to final • Numerical example of F-4E engaging
alt i tude , veloci ty , wi th  F-106
and heading

• 22 • Three-dimensional • Numerical results for F-4H aircraft
minimum-time turns

23 • Three -dimensional • Numerical results for F-4H aircraft
minimum -fue l turns

24 • Minimum-time turns • Numerical results for hypothetical
at constant supersonic airplane
altitude

p
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t h r e a t  c o n t c u r s , or  w i t h t e r r a i n  f o l l o w i n g .  I f  necessar y , three-
dim ensional ( o r  t h r e e - d i m e n s i o n a l  p l us time) g u i d a n c e  o b j e c t i v e s
can be satisfied by integratin g the horizontal a n d  v ertica l designs.
For  e’~ p i e , t h e  h o r i z o n t a l  guidance solution for total path length

can be used  as i n p u t  to  the  v e r t  i ca l  gu i d a n c e  l a w s , w h i c h  a r e  t h e n
solved to determine the fuel optimum alt itud e /vel ocit~ profile to

achieve this desired total range . The horizontal and v ertical guid-

arice jirobiems are discussed sep a r a t e l ~ b e l o w .

a . H o r i z o n t a l  G u i d a n c e

H o r i z o n t a l  gu i d a n c e  o b j e c t i v e s , as a r u l e , s t e m  t ron  t w o
higher-level concerns: (1) fli ght management and ()  th re~it av o i d -

ance. Flight m anagement is concerned w ith the synthesis of t ra-

j ector ies ~hich:

• pass through specified waypo ints in a contro lled manner

• transition from an initial location ~wavpoint ) and head-
ing to a final location (or location and h e a d i n g )

• intercept and fly along a line in a specified direction.

Threat avoidance in the horizontal p lane ,* of course , is concerned

wit h t h e  avo idance of specified hazardous topograp hic regions with-

in a given altitude r a n g e  so as to minimize the exposure to threat

o r m a x i m i z e  the probability of m i s s i o n  s u c c e s s .  In  a d d i t i o n  to t h e s e
p r i m a r y  c o n c e r n s , h o r i z o n t a l  g u i d a n c e  o b j e c t i v e s  f r e q u e n t ly  include

control over the time of arrival at specified points along the path ,

not a~ lv the terminal point.

* Strictly speaking , the threat avoidance problem is three-
dime n~ ional ,invo lvin g the consideration of altitu de as well as
horizontal position in order to avoid the three-dimens ional threat
volumes. For illustration here , the horizontal a s p e c t s  of  t h e
threat avoidance problem will be emp has i zed , with altitude assumec
to be constr a ined within some acceptable range. The algorithm
which generates the simulation results presen ted later , however ,

0 is c a F a b l e  of treating the full three-dimensional problem.

5 1
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(1) Minimum-Time Transition

Most common problems in horizontal guidance can be

classified into three types [25]

Type 1: Flying from an initial point and heading to
a specified final point and heading;

Ty pe 2:  Flying from an initial point and heading to
intercept and then fly along a line of spec-
ified heading ; and

Type 3: Flying from an initial point and heading to
a specified final point with arbitrary final
heading .

Many more complicated horizontal guidance problems can often be

interpreted as a sequence of these basic problem types.

The s o l u t i o n s  to t h e  t h r e e  g u i d a n c e  p r o b l e m s  d e f i n e d  above
are not unique ; i.e., problem Type 1 may be solved by a number of

steep turns and s t r a i g ht  p a t h  s ect i o n s  or by a few sweeping t u r n s .
In the interest of being able to generate efficient and predictable

trajectories for all initial and final conditions , it is reasonable

to ask what traiector y perfo rms the desired transition in minimum

time.

In formulating the minimum-time optimal contro l problem , one

typicall y uses the p lanar , point-mass aircraft model:

= v ,,~ ( 6 :’)

= 
~ y 

(~ 8)

- (f~ /m) sin ~ (69)

v =  (f~/m) cos ~ (0)

where . is the heading angle measured clockwise from the x-axis ,

i . e . :

-V = t a n ~~ (v /v x
) ( 1 )
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and where

x and v a r e t h e  coordinates of position in t h e  p l a n e

and v are the components of velocit y in the plane

f , is t h e  l a t e ra l  f o r c e .

The lateral force f~ can be considered to he the control , or else

the hank angle z can be used as t h e  c o n t r o l , s i n c e  t h e  t w o  a r e

r e l a t e d  b y :

= m g tan ~ 
(~~

)

By convention , positive ~- corresponds to ri gh t  w i n r  down .

R e a l i s t i c a l ly , the control variable must be constrained ,

e i t h e r by sp e c i f \ ing  a m i n i m u m  a l l o w a b l e  t u r n i n g  r a d i u s  ~~~~~
m a x i mum a l l o w a b l e  b a n k  angle ~- , o r m a x i m u m  a l l o w a b l e  l a t e r a lm a x
f o r c e  ~~~ , m ax For constant velocity turns , these are related by :

R = \-
~~~/ (~~ t a n  I) (3)nun max

f = m ii tan ‘~~ ( 4 )
2 max - - max

where V is the total aircraft velocit y m a g n i t u d e .

The m i n i m u m - t i m e  t r a n s i t i o n  can  now be f o u n d  by  m i n i m i z i n g
the Hamilton ian :

El = 1 + ~~~~ + 
~
- f 1/m ~~- \ ~~ sin V cos I )  ( : ‘5)

subject to the system equations (~6 - O )  and control constraint

equation (~ 4). In the above equation , the ~‘s are the costates

or LaGrange multip liers. The three types of guidance problems

defined previously can be formulated by specif~ ing appropriate

final conditions on the state and costate.

\s can be seen in Equation (~~Sj , the control variable enters

lin e .irl y* in the Hamiltonian. Application of the minimum princi p le

* Rather than , say, ~uadrati ca llv as i:~ the line ar-quadratic
(quadratic s~ nthe sis) problem ~Iescribed in Section II.

so
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to such p r o b l e m s  r e s u l t s  in a s o - c a l l e d  s i n g u l a r  s o l u t i o n .  T h i s
is e v i d e n t  s ince  the  n e c e s s a r y  c o n d i t i o n :

st-I = 0 = A3 s in  ~ 
- A~~ cos ~ (‘a)

does not resul: in expression solvable for the contro l f. in terms

of t h e  s t a t e  and c o s t a t e  v a r i a b l e s .  r n s t e a d , f o r  s i n g u l a r  problems ,
the control is found by the requireme nt that Eq. (6) be satisf ied
b r  a f in i t e  amount  of t i m e ; in ot h e r  w o r d s , t h e  t i m e  d e r i v a t i v e
of  ~H / 5 u  mus t  be zero.

C a r r y ing  t h r o u g h  the  c o n v e nt i o n a l  t e c h n i q u e s  fo r s o l v i ng
such  si ng u l a r  problems , i t  has  bee n sh ow n [~~5] that the non-singular

i n t e r v a l s  of t r a j e c t o r i e s  c o n s i s t  of t u r n s  w i t h  m a x i m u m  b a n k  ang le

(and hence mini mum allowable t u r n i n g  r a d i u s )  and the singular inter-

vals of optimum trajectories consist of straight-line flight.

Specific optimal transitions for the three types of guidance

problems described above can he synthesized from such maxi m um hank-

ang le turns and strai ght line segments , using -zertain heuristic

rules to assure the attainment of prescribed end-points with a

m i n i m u m  a m o u n t  of  m a n e u v e r i n g .

Applic ation of the ab o ;e  to  t h e  h o r i z o n t a l  g u i d a n c e  p r o b l e m
takes on both off-line and on-line connotations. 0ff-line , of

course , the theor~ can be ared to synthesize particular flig ht

p lans to fly prescribed scenarios , in addition , on-line algorithms

have been generated to synthesize minimum time or minimum path-

length transitio ’i tra jectories for end-point attainment. As in
example , one such on-line algorithm ~~h ] , known to require about

10 miEiseconds on a fixe- ’ -point Sper -y 1319- \  c o m p u t e r  f o r  s o l u t i o n ,

has been successfully used for trajectory “capture ’ - - in particular

f o r  t h e  m i n i m u m - t i m e  n u l l  i n g  of l a t e r a l  errors which -i re typ ically

di s c o v e r e d  by an o n - b o a r d  g u i d a n c e  s y s t e m  w h e n  i t  a c u u i r e s  h i g h l y

accurate micr owave navi gational data near the runway .

~ 
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Ihe outputs of the horizontal g u i d a n c e  t r a j e c t o r ’~ g e n e r a t i o n ,
t h e n , are t ~~ feronce t r a t  e c t o r v  coord m a t  es 

~R ’ 
~~ an d  t h e

r e f e r e n c e  b~ink ing le R wh i cli I s nom i n a i l  v : e ro a the st  r i i t

segm ents or equal to :
~~i~~~~ 

during t u r n s .  tCoruman j s m o o t h i n g
or r a t e - l i m i t i n g  may also he used to ‘soften ’ th~~se t r:i n sit ion s in

command between z e r o  a n d . jR ma x

L )  C o n t r o l l e d  Time of .- \rri val

;\S m ont ioaed p re y io usl v , guidan ce obi ~~ct ives fre-

uent lv inc ~ude cont roll ed t ime of arrival at -zpec i led p oints

:i long the s~’nthes ized reference p ath. font r~~1 over the t ime o f
arri val at an ar b itrar y point on the path can be e .~e rte - J either by

2l od ifi cat ion of the t o t a l  p a t h  l e n g t h  up t o  t h a t  po int , e. g .,

p a t h  - st retch i n maneuver s 1 or b~ tnodu lat ion of th e 1 1  rc raft speed

.\ga in , as wa~ the c ase with horizontal flight - path svnth cs is , an

inf inite numb er of solutions to the time of arrival problem exist.

~ne sol ution p ractical for man~ f l i g h t  m a n a g e m e n t  a m ; ~- i i c a t i o n s  is

discussed belo w .

The p r o b l e m  is to  s v n t  l ies  i c e a speed p r o  f i l e  f o r  -i g i v e n

referenc e h o r i z o n t a l  ra )e c t orv such that an aircraft start ing w i t h

m i ’  jul sp~ od V at  t i : n e arrives as t h e  final p oint at the

spec i f l e d  t ~me t 
~ 

with veloci ty V . The cons t ra m t  s ire t ha t

• the speed V must be w ithin the range of the m inimum (V 1~ ~) and

m aximu m V )  speed restrictions ot the aircr a ft and  t h a t  speed

change s r u s t  he carried out with constant acceleration or de-

celer ati on Ad . sel ected to fit the r~erformance of a o arti c u li r

-i i r craf t

A p a r t i c u l a r  p r a c t i c a l  a l g o r i t h m  [ T ]  f o r  s o l v i n g  the  p r o b l e m
p o s e d  a b o v e  is d e s c r i b e d  b e l o w .  The  s o l u t i o n  is  b r o k e n  d o w n  i n t o
t h r e e  s t e p s .

F i r s t , t h e  a L g o r i t h m  tests the feasibility of t h e  r e f e r e n c e
path l e n g t h  L by c o m p a r i s o n  w i t h  L inu x and L m i n ~ w h i c h  a r e

he m a x i m u m  and m i n i m u m  d i s t a n c e s  t h e  aircraft is caaahle of t r iv e r -
sing in the al l otted time , respectivel y . If the p a t h  length exceeds

5s
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Lmax~ 
the speed profile is beyond the aircraft ’ s performance

capability of flying, and a later arrival time must be specified .

If the path length is less than Lmin~ 
it must be increased so that

the new path length is within the range of L - to L , f o r  i n -nun max
stance by uiing a path-stretching maneuver.

Second , the algorithm defines an appropriate speed profile

consisting of at most three segments: an acceleration or deceler-

ation segment starting at V0, a constant speed segment at some

nominal speed V
n~ 

and another acceleration or deceleration seg-

ment ending at The definition of the appropriate speed pro-

file involves two additional parameters L1 and L 2, which are

defined respectivel y as the minimum and maximum distances that can

be travelled in the allotted time interval if speed is constrained

to lie between and \ f .  These parameters correspond to the

s had ed areas under t h e  speed p r o f i l e s  shown in F i g u r e  16. The

parameters L 1 and L~ are used to select an a p p r o p r i a t e  r e f e r -
ence speed profile from the candidates shown in Figure IT. For

example , i f  L less than  L 1 (and if L passes the feasibilit y

test in Step 1 above) , the a p p r o p r i a t e  p r o f i l e  m u s t  include sus-

tained fli ght at a nominal speed Vn lower than both V0 and

as shown in the first curve in Figure F.

rhird , t h e  n u m e r i c a l  v a l u e s  of t h e  p a r a m e t e r s  in t h e  s e l e c t e d
spe~

-’d profil e are J o t  erm~ ned by matching t I e  ar e a  under the selecte d

curve w ith th e reference feasible rat h len~ th L.

ihe ou tput of t h i s  t i m e - o f - a r r i v a l  c on tr o l a lg or :t hm is a

r e f e r e n c e  speed profile ~~~~. w h i c h  may now he inc laded with the

horizontal gu idance reference states 
~‘R’ R’ and ~ -aS d efined

above . -

(~~~) 
Threat .-\yoidance

.-\ v~’r v promis ing area for the a p p l i c a t i o n  of
op timiz a tion theor y is the problem of m a \ imiz i ng t h e  probabilit y

of ;u c c e ~~s of tactical m i s s ions subject to enemy thr o at s . Fhe

S ~~
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problem is twofold: (1) determining the optimal flight path

through the threat environment , and ( 2 )  determining the optimal

utilization of countermeasure resources so as to reduce threats

along the selected path. Obviousl y and unfortunatel y , these two

aspects of the problem are hig hly coupled: the optima lity of the

selected path in terms of mission success probabilit y and proba-

b ili tv of s u r v i v a l  is strongl y dependent upon how counter-

measure resources are applied. Conversely, it is usuall y best to

direct countermeasure resources so as to concentrate on paths

which  exhibit some degree of optima litv in terms of fuel expend-

iture or t o t a l  t ime o f  e x p o s u r e  to  t h r e a t s .

Many simplified approaches ha~~e been taken to the threat

avoidanc e problem , with very limited success. The main dif fic ult ~
lies in the hi gh degree of dim ensional it y incurred by the strong

c o u p l i n g  of  t h e  s e v e r a l  i m p o r t a n t  f a c t o r s  c i t e d  a b o v e .  S im p l i -
fication s w h i c h  n e g l e c t  c e r t a i n  f a c t o r s  c m  be s u f f i c i e n t l y  sub-

o p t i ma l  so as not to he worthwhil e .

One t e c h n i q u e  w h i c h  is highl y suited to such optimization

processes is dynamic programmin g . bynam ic p ro grammin g converts

the problem to a multistage decision process; the control solution

is formulated as the sequence of decisions which optim i:es a m u l t i -
faceted performance index over the entire trajector y . Bas ically,

dynamic programmin g converts the simultaneous determination of the

entire ontimal control sequence into a tractable sequenti al

solution of vastl y simpler intermediate optimization problems.

Historicall y , dynamic pro gramming solutions to high-dimensi onal

pr oblems have incurred severe computational requirements. ~luch of

this difficulty stems from the use of conventional , direct algo-

rithms which attempt to exhaustivel y search all possible contr ol

combinations. Innov ative solution al gorithms , however , h a v e  been

developed to o b v i m t e  the need for this e x h a u s t i v e  s e a r c h .  \lore-

aver , advances in computer architectures , n amel y the advent of

highl y parallel m rr mv processors , ideally suit t h e  d y n a m i c

h i
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programming solution technique of decomposition into multi ple sub-

problems. Consequently, a dynamic programming solution to the

sophisticated threat avoidance problem is extremely feasible.

To illustrate the performance of a particular dynamic pro-

gramming algorithm , results are presented below from some recent

work [281 which generates optimum flig ht paths and countermeasure

resource allocation for penetrating enemy defenses. The algorithm

is capable of incorporating :

• T h r e e - d i m e n s i o n a l  and flight d i r e c t i o n  d e p e n d e n c e  of
the  l e t h a l i t y  of t h r e a t s ,

• V a r i a t i o n  in f uel  c o n s u m p t i o n  as a f u n c t i o n  of speed
and a l t i t u d e ,

• The effects of uncertai: tv  in the existence and
location of the threat ,

• Terrain masking,

• E x p e n d a b l e  E l e c t r o n i c  W a r f a r e  ( E W )  r e s o u r c e s
( e . g . , decoy s , c h a f f , anti-radiation missiles )

• No n - e x p e n d a b l e  LW r e s o u r c e s  e . g . ,  r a d i o  f r e-
quencv j ammi n g )

• V a r i a t i o n s  of  a i r c r a f t  radar c r o s s - s e c t i o n  as a
f u n c t i o n  of aspect angl e ,**

• Boundary conditions , such as requiring the aircraft
to approach t he  t a r g e t  f r o m  a s p e c i f i c  d i r e c t i o n ,

• Fue l constraints.

The algorithm will make the optimum tradeoff of available penetra-

tion techniques such as fly ing around threats , jamming, deco ing,

fl ying under r a d a r  c o v e r a g e , e t c . , to determine the optimu m means

of  pen e t r a t i o n .

Fi gure iS shows the symbology used in the simulatio n results

which follow. As shown , the threats may either be known with

c e rt a ~~nt , or  u n c e r t a i n t y  may e x i s t  in t h e i r  a c t u a l  l o c a t i o n *

* \dd~ ti o n a l  “~~O~ l ip ” t h r e a t s , which repre~ ent those detected
d m r i n ~ ‘be mission by o n -b o a r d  s e n s o r s , can a l s o  he h a n d l e d
by t h e  s i m u l a t i o n  m o d e l .

** i .C . , the angle between the aircraft’ s pl an e of max imum cr o-~s-
sect io n a l area an d t h e  r a d a r  l i n e - o f - s i m z h t .

~ 
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Figure 18. Symhology Used in Threat Avoidance Simulation Examples
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(all threa ts are SAM sites). Threats against which expendable

resources have been deployed are indicated as shown ; such deploy-

ment , of cou rse , serves to reduce the effectiveness of the threat.

An exam p le run of a dynamic simulation developed to evaluate

the threat avoidance algorithm is shown in Figure 19. The scenario

seeks the attainment of two objectives Ti and T2 in  t h e  presence
o f t h i r t e e n  t h r e a t s :  Al , A 2  , Bi , 82 , 83 , 84 , 85 , Rb , B

Cl , C2 , C3 , a n d C4 . The l o c a t i o n  of some of t he  t h r e a t s  ( A 2 , Cl ,
C2 , C3 ,  C4)  are not known with certainty, hence the dashed

uncertainty contours. The fli ght path shown is the minimum - fuel

solution , which is used to start the algorithm - -  i t  is n ot t h e

f i n a l  s o l u t i o n .  Shown at  the  b o t t o m  is the allocation of Electronic

C o u n t e r m e a s u r e  (ECM)  power  to each t h r e a t , t h r ee qua n t i z ed v al u e s
of c h a f f , two decoy s , and one A n t i - r a d i a t i o n  ‘l i s s il e  (ARM) . The
fuel used (ll , 50 ibs), probability of survival (0.738), and the

probability of accomp lishing the first and second objectives

(P1 = 0.~~35 , ~T 
= 0.774) are g iven on the right side. Even

t ho f ~lg h F i g u r e  19 is not  t he  f i n a l  optimum path , the ECM power is

o p t i m a l ly  a l l o c a t e d  a m o n g  t h r e a t s .  An examination of the alloca-

tion of radio frequency (RF) power shown at the bottom of Fi gure

19 indicates that RF power was allocated to several threats at

many p o i n t s  d u r i n g  the  s c e n a r i o .  An example is shown at t ime point

1 2 : 2 0  w h e r e  the  RF power is allocated to t h r e a t s  C3 and ~4 .

F i g u r e  20 indicates the results obtained after the program

opt~m i z e s t h e  p a t h  and a l l o c a t i o n  of r e s o u r c e s .  N o t e  t h e  l a r g e
inci~~ase in all of the performance indicators (e.g., the probability

o f s u r v i v a l w en t f r o m  0.738 to 0.887). Also , the alloc ation of

many of the expendables changed as was expected. tm ne unit of chaff

ori g inally allocated to threat Cl was changed t o  A l and the decoy

allocated to 83 was reallocated to 81. A l l  expen dabl e EW resources

are deployed and all of the available fuel is used. This occurs be-

cause allocating a resource results in incre ased performance com-

pared to not allocating the resource; i.e. the cost penalt y p laced

‘ 
on actually using the allotted expenda hies is low compared to the

cost penalt y associated with m ission failure.
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Thus far the optimum solutions h a v e  all been based on a p r i o r i

~although probabilistic) information. Consequentl y , the opt i~nu m

t r a i e c t o r y  s o l u t i o n s  c o u l d  have  been p e r f o r m e d  o f f - l i n e  and  stored

p r i o r  to t h e  f l i g h t .  If o n b o a r d  s e n s o r s  or  a reconnai ssance/

communications s\’stem reduce uncert aint y in threat location (or dis-

cover pre y lori s l~ unknown threats) , radical ly different so l u t  ion t ra -

jector ic s and oI - t i m u m  a l l o c a t i o n s  of  r e s o u r c e s  r e s u l t .  Fh t u r e  1
;~ resents s u c h  an exainp le ~here on - line r e c o m p u t a t  ion of the opt im lI:r

s o l u t i o n  is necessar y . As shown , it is assu med that the airc r aft

h as  proceeded successfully to the point P , at which time onboard

sensors determined the actual location of throat Cl. This e1i :~ii -

nates the uncertaint y in Cl’ s location as indicated by the remo va l

of the dashed circle around Cl. The new allocation of resources

and flight path is shown . Since the fl i ght p i t h  to ob jective Ti

is m o r e di r ec t  t h a n i n F i g u r e  20 , more fuel is a v a i l a b i e  to fly

around threats C2 and  C3. This caused a reallocation of a decoy

from Bi to 83 and a reallocation of chaff fro;n C to - \ .

~it h  t h i s  new a l l o c a t i o n  and f l i g ht  p a t h , the p r o b a b i l i t y  of sur-

vival increased to 0.8~~~. Results of this nature i~ere also obtain-

ed when previously unknown “p o p - u p  t h r e a t s  w e r e  i n t r o d u c e d .

Computer resource requirements for executing (on-line) the

d y n a m i c  p r o g r a m m i n g  a l g o r i t h m  d i s c u s s e d  above a r c  no t  prohibiti ve.

Even the direct-search , serial processing form as implemented on

a Univac 1108 ( 1 u sec cycle time) takes less than S minutes for

complete solution. Using the implicit stage algorithm can reduce

this to less than 8 seLonds; however , this al gorithm has the unde-

sirable propert y of prohibiting transitions back toward the start-

ing point. This difficulty is alleviated by other mathematical

techn i ques , such as the method of successive approximations , which

can obtain an approximate solution on a serial processor in about

10 seconds to a minute. Far greater speed improvements (1000/I

speed up) are possible if off-the-shelf parallel proces sors are

employed . This occurs because the computations necessar y to

p
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determine the optimum transition for all states at a g iven stage

a re  i n d e p e n d e n t  of each o t h e r  and , therefore , can be performed in

parallel. Typ icall y , the designer will use such a dramatic im-

provement in processing speed capabilit y to obtain a more accurate

solution while letting solution time approach some reasonable

number (sa\’ ~0 seconds) . This is usuall y done by reducing the

“granularit y ’ of  t h e  solution , i.e., by breaking the optimization

prob lem up into a greater number of stages.

The preceding h a s  shown an iin p lem entable basis for reference

generation in t h e  horizontal ‘~lane which is an alternative to con-

ventional ti~o-dimensiona l horizontal guidance. The  outputs to t h e
inner 1oop are the sarr e , h o w e v e r , name1~’ the reference positions

:n the horizontal plane X
R 

a n d  R and the velocit y magnitude

Nominal bank ang les t R for required turns can  also be

synthesized b y relating bank ang le to turn r a d i u s  R by using the

relation:

R = V~~1 (g tan 
~R ’~ 

( _ _ )

b. Vertical Guidance

Typical objectives of aircr aft guidance in the vertical

p l a n e  a re  the generation of:

• T i m e - o p t i m u m  or f u e l - o p t i m u m  a l t i t u d e  profiles to achieve
a given altitude and/or range transition;

• P r o f i l e s  ro m a x i m i z e  r a n g e  f o r  a given thrust level and
fuel allotment ;

• Commands to  f o l l o w  t e r r a i n  or  a v o i d  v er t  ical t h r e a t  con-
tours while simultaneousl y optimi zing cther aspects of
perfo rmance (e.g., minimum throttle a c t i v i t y ) .

A moderate amount of work has addressed optim al control solutions

to these vertical guidance problems , nota b l ’ Refs. [15], [19] and

[29] through [32]. Most of the p r a c t i c a l  o n - l i n e  i m p l e m e n t a t i o n s
01 t h e s e  s o l u t i o n s  d e r i v e  f r o m  t h e  a p p l i c a t  ion of  t h e  s o - c a l l e d

“ e n e r g y  n a n a g e m e n t  ( E M ) ”  methods.

________ ________________________ 
______________________________ 
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The EM methodology is characterized by order-reduction

approx imations to the point-mass longitudinal equations of air-

craft motion. In particular , the energy s t a t e  a p p r o x i m a t i o n  ( s e e
Apper.d ix) is used to eliminate the dynamic equations b r  velocity

and flight path angle in fa~ or of a single dynamic equation in

the energy st at e:

E = (T-D)V/m (78)

where E is the total (sum of kin etic and potential) ener~tv per

unit mass , i.e:

E = 1/2 V
2 

+ ~h (5)

a n d w h e r e

T is the thrust

D is the d r i g

V is the velocit y rr -ignitu de

m i s  the m a s s

~i is t h e  a l t i t u d e

is t h e  a c c e l e r a t  ~on of g r a v i t y

Th r~~s is assoned to be a funct :on of altitude (h) , vcloc~~t~ - , and

ti e set t ~nLt

-: = (h ,\ ,~~~)

m d  r:’ ~ is a func t ion of a i t i tud -~’ and vel oc i t \

U = D (h ,V ) ~S1 )

The o t h e r  l v n a n i c  e~~r i itions ret ained in th e EM net ho dologv are:

x = V 52’

f(h ,V) ( 5 3 1

p

I.
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w h e r e  x 1s :he -Ll un — t ::1L ~ pos it ion coordinate -i n o t  is t h e
fuel flo\% r a t e .  I n  the equ~r t ions a b o v e  , 1)0th an g l e - o f  - a t t a c k  and

fli ght -p ath m g  I c  ~m r e  c o n si d e r e d  snia) I , and l i l t  e ( i m : l l s  — - . -L ’ h t

Befor e explor in g seine m ll~m s t r m t  l y e  ex anp les of the ~M m e t h o d -
o lo gy , it is app rep r i a t e to not e se~ e r:i I import ant pe in

• or  t a i n p reh ems are a d d r e s s e d  H jut crc h - u i - t i n g  V : i I i ~1 b e s
in the ~1 ~-u aat ions. F o r  e x a n t r ’ l e , s~ ec ii j c energ y
:na\ - be used as he st at e v a r  i oh Ic and t i ne i s  :~~ i n d e n c  r: —
dent ‘ - i v  i ah  1 e in one vpo o p rob 1 em , b u t  ri a r i c  ‘ i c r  , i t
m ay  be c o r t v e n i  ent to d i v i d e  ho . ( 

-

~~~ I by l u .  5 3 )  o cnange
th e Lnd ep end L -tl t var j i b  le fr om t inc to ‘ra -s

• in ;~ ro \ i not ions gene r:l 11 rca t e 1 t her h u r \ ~~ the
control ~~m r i a h i e ,  s i n c e  tue t v n ;mrmi cs of  t h e s e  o o u u  i t ics
a r-o neg cc ~J and the dcv I Va  1 \ C S  0 f t h e s • t e ~ I :‘ , e C
eon he exures seJ j u  t e r n s  o f  the se ’~ariaHes . \ u i - .: h

c a n  h e  r e i t t e c  to one another and to he st a t e by
Eq. L~-)-

• n t he con  t e x o in op  t i nra I c e n t  ro 1 n rob I vn , lie enc rg -. -

s t a t e  a u prox ino tio ns i-- : lv hat the cc rntroi v~~n i i h 1 e h
or  V v ar i e s  s~~on 1~ - ove r r ost of the r i ~ cctor v , bu t it
r a e  c o n t a i n  J L s c o n t l n u i t i e s  ire r in d v i r i o t i  u . s confi n ed
t o narr n’= re gions. V— i t - io n s ex tensions to the :~ I r e thodo l—
o g v  h a v e  h oe r d ev e  lop e . for ox - lirple by i~~ ~n g  s i n g u l a r
p er t urb it ion t heor~- to r rovide correct ~ns to the ipprOx-
ir ate solution thr ou -th mna l -; s is of the h anu \ evra-
tics in a ‘‘ st r etched ’’ t i n e  scale [1)1 (see Sevt ion ~. I).

1) ‘-b in i niuni Fime e Ci i :Th

Perh ap s the niost easil y - l iscerni l- le app licat ion of ht -b

:neth.c-ds is determinin g the alt it ud e vcl oci t v p r o f i l e  m~hi ch r:ini-

n i:es  t h e  time to cl ini b to a spe cif ied en e r ~ v l e v e l . ~l i n i m i : i n ~
t h e  t i m e  t n  c h a n t e  e n e r gy  l e v e l s  is e q u i v a l e n t  t o  m a x i m i z i n g  t h e
r a t e  of  c h a n g e  of  e n e r g y  ii ( E q . ~~S)). TIr ms , th e ar :-p rox ira t e iv

opt tma
~ 

reference velocit y (VR ) profile i s  t h e  one m~h i c h  m a x i m i z e s
I for . i  g iven E , or ni th e - r at i cal lv:

- o r g  -1 n a \ f T ( E , \ ) - D ( E , \ i ) ~~/ m J  I 
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which can be read “V R is the value of V whi c h m a x i m i z e s  the
expression [(T-D)V/mJ with respect to V. ”

When this expression (Eq . (84)) for the approximatel Y optimal

control is evaluated numericall y , a solution path similar to that

s h o w n  i n Fi gure 22 typically results. The path is characterized

by portions which satisf y Eq. (84), connected by portions of con-

stant energy contours. Thus , the approximately minimum-time path

from poin t A on energy level E 1 to point G on energy lete 1

E -~ is g iven by:

• a rap i d d i v e  to B

• m o t i o n  al ong t h e  o p t i m a l s e g m e n t  B C  to point C

• a rap id d i v e to D~

• motion along the optimal segmc nt DF to F

• a r a p id c l i m b  ( z o o m )  to  G .

- ‘~
- — -~~~

— 
~~- E G  ~~~~~~~~~

I :

~~~~ ~~ N, 
- - --

~~~— --— .5.-. ““‘

F i g u r e  22 . Tvp~~c a l  t~inimu m -Time Clim b Path
t o  H i g h e r  E n e r g y  Leve l ~l S~

F h i s  r a p i d  l i v e  i s  c h a r a c t e r i s t i c  o f  t r a n s o n i c  t r a m e c t o r i e s ,
w h e r e  f o r  ce r t a i n  a i r c r a f t  i t  b e c om e s  m o r e  e c o n o m i c a l  t o  go i n
-.-e b c  i v very mu i c k  

~ 
( by di r m ni~ ) so is to ~et h r oimgh Mach I is

m m m d l v  is pos s ib le.
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\r’ shown in the fi gu re , the m pp r ox imatc- lv opt i u i I  p a t h  is

-eer iv ed from FM methods exhibits d i s c o n t i n u i t i e s  in the c o n t r o l
v a r i a b l e  \ , wh ich appear as corners in the p r o l  i le . T h e s e  di 5 —

con t L n u j  ties stem from the energy state approx ima t ion , which

neglects tim e dyn am ics of V ari d assumes that V and ii c a n  he
tr :id~-d i n s t m n t a n e o u s l v  at constant ener :v levels u s i n g  the relation:

h ( F  - 1/2 ~~~~~~~~ / g  L S 5 )

Mo re accurate solutions ( four-d imensional state , n u m e r i c a l  solo-

t ion by the gr adient method) do ri o t exhi b it such d i s c - o n t i n u i t i e s
(Fig ure 23~ , iltiiouglm l v c i -  I L  a g r e e n i e n t  is good between the more

accurate m etho d m d  the noel: easier ami p r o\ :nnlte FM m ethod. A

s ingu lar p ert u rhat ion ipr- roach h i s been used [ l t ~ to analyze the

Jis -~o rr t in rm i ties of the app rox i : i : i  te m ethod and c o m p u t e  cor r ections

~h i c h  ef ~ ecti v elv smooth the corners in the ipn r o x imn:i t e solut ion.

- ,
r n • n - - ~~L - -

N
N

e

F i g u r e  23 .  C o m p a r i s o n  of  ‘ ‘ I t x  act ” and  F n e r g v - S t  a t e
M inimum T i m e - t o - C l i m b  Paths [15~
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The reference quantities generated by t he  m i n i m u m  t i m e - t o -
climb solution , then , are reference velocit y V R and reference

altitude hR. While these quantities are considered “controls ” by

the outer-loop solution , they are nevertheless states of the over-
all path control problem. Calculation of the remaining reference

states and reference controls from these key reference quantities

is discussed in Paragraph C below.

(2) Minimum Fuel Problems

Application of EM methods to minimum fuel problems

often invo ives :i c h a n g e  of independent vu ri able from time to n r a s s .
T h i s  is done  by d i v i d i n g  E q .  ( S 3 )  i n to  I : .  ( 7 5 )

LIE = V b T - D )  ( S t
or :

Mi n :miz ing the fuel used  t o  ch a n g e  e n e r g y  l e v e l s  is e q u i v a l e n t  to
m a x i m i z i n g  i l / d r . t h e  rate of energ y gain p e r  change in ru ss.

Thus , t h. i t - : ’  rox i n  t clv opt ini al r e f e r e n c e  v e l o c  i iv for fuel -minimum

c l i m b  i s :

= org 3m0.\ [(T-D V /mf J I (57)
V

\n ex-i m p le ~25 1 ap proximatel y minimum-fuel climb path is shown

in Fi gure 24. For comparison , a s t a n d a rd r e c o m m e n d e d  e c o n o m i c a l
climb p a t h  (an 0.75 Mach climb) is also shown . The near optimal

method saves 28’) pounds of fuel , or 15.3 percent of t h e  n o m i n a l
expendit u re , for the examp le aircraft in a cli m b to 30. M)0 feet.

( 3 )  M ax im um Range Problems

A p p l  ica t  ion of  EM m e t h o d s  t o m a x i n n m n i  r a n g e  p r o b l e m s
t y p i c a l l y  i n v o l v e s  m c h a n g e  o f  i n d e p e n d e n t  v a r i a b l e  f r o m  t i m e  t o

r -m r t~~e c o o r d i n a t e .  7 h i s  is done  h-c d i v i d t n g  H. (-52) i nto Lu , ~ 7S~
p and ~~. ( S 3 )  

‘A 
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- ----— --~~ -- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
.

- __•_~~~~
~•



r - _ _ _ _ _  

~~~

- -

~~~~~

-

~~

- - - - 
_ _ _ _ _ _

= (l-D )/m (~~S)

= f/\’

To f i n d  t h e  t r a j e c t o r y  i~h i c h  m i n i m i z e s  fu e l  o v e r  a s p e c  t fied

ra n g e  I x , x 1J , one  c m  m i n i ~n m  ze the t o t i l  m i s s  c h a n g e  s u b j e c t  t o

the ene  r g v  ~ to e c o n s  t r ;i m mi ~ i . e . , t Im e co s t ¶ u n c  t i On I s

( T - I ) ) / r r i ) ox

Fhtms the ap p  r o x  l i m i t  e l v  o p t  i ma I m e  t e r e n c e  y e  lo  c y s g I ve :~ H-

= org i i n  1 P) / : i  1 } ) I
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Fi gure 25 shows a typ ical altitude/velocity profile for an approx-

imatel y minimum-fuel climb , cruise , and descent to :ero altitude

at a specified range. Fi gure 26 presents corresponding p lots of

altitude and fuel versus range [251 .
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(4) M i n i m u m  D i r e c t  Op e r a t i n g  Costs

Instead of minimizing the fuel usage alone over

a fixed range , it max’ be more desirable to minimize a combination

of fuel and t r a n s i t  t i m e , e x p r e s s e d  in terms of direct operating

c o s t s .  Phus , the cost function to be minimized is:

J = C f ifi f 
+ c

~~
(tf 

- t )  (9:)

where c~. ari d c~ are the unit c o s t s  of fuel and time , respectivel y ,

is t h e  m a s s  of  f u el bu rn ed , and (tf 
- t 0

) is t h e  t r a n s i t  t i m e .
In integral form , the cost can be written:

= f
t 

-~ t C f 
+ c

~~
) LI t  ( 9 3 )

where f is t h e  f u e l  b u r n  r a t e .

Solution for the altitude/ran ge profiles which minimize direct

operating costs ( E q .  (93)) subiect to the approximate state dynamics

(Eqs. (8) throug h (83)) can now be addressed using t h e  minimum prin-

ciple. Typically , a change of variable as exemplified by Eqs. (88)

throug h (90) is again used. Reference [30] presents some results

for subsonic turbofan aircraft with the restriction that the solution

trajectory consist of three segments: a monotonic climb to cruise

energy level , a segment of optimal subsonic cruise , and a monotonic

descent to the final energy level.

(S) Terrain-Following Guidance

The p r i m a r y  obj ective of terrain-following guidance

is to minimize exposure to the enemy by producing flight paths which

lie as close to all terrain toints as possible. To be practical ,

however , the terrain-following guidance should produc e r e f er ence
tr ar ectories which can be followed extremely well by actual aircraft .

The terrain-following control systems that are currentl y on

operational aircraft compute flig ht-path angle commands based on 

~~~~~
- -

~~~
- - - ——
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a “ c r i t i c a l ”  p o i n t  on t he  t e r r a i n  ahead of the aircraft. For dif -

ferent systems , the  me thods  v a ry  f o r  d e t e r m i n i n g  w h i c h  point is
currently the most critical. Since it is the fli ght-path angle ,
or s lop e , that is directl y controlled , the actual vehicle path is

not tightly controlled. The path is the integral of the slope with
respec t  to r a n g e ;  t h e r e f o r e , t h e h e i gh t  e r r o r  is the  i n t e g r a l  of
the total slope errors , w h i c h  are due to both sensor errors and
c o n t r o l  sy s t e m  i m p l em e n t a t i o n  e r r o r s  [31]. Operational terrain-

following sYstems also rely on manual throttle control or on auto-
t h r o t t le s  w h i c h  attempt to maint ain nearly constant speed; neither
of t h e s e  m e t h o d s  p r o v i d e s  e f f i c ie n t  eng in e o r e r e m t i o n , in  t e r m s  of
both eng ine life and fuel consumption.

To overcome these difficulties , recent research has been

directed toward total path con trol , as opposed to the single
“critical ” point te chni ques discussed above. Focusing on the

total m a t h  also allows simultane ous consideration of secondary

o b i e c t i v e s , s uch as m e e t i n g  c h e c k - p o i n t  t i m e s  ( c o n t r o l l e d  t i m e  of
a r r i v a l )  or o p t i m i z i n g  e n g i n e  p e r f o r m a n c e  ( e n g i n e  life or fuel

c o n s u m p t i o n )

One of the total path techni ques is based on the cubic sp line *

reference path [32]. The concep t is illustrated in Fi gure 27
(p. 8 2 ) .  .-\s shown , the reference altitude h R path is tangent

to t h e  m i n i m u m  c l e a r a n c e  c u r v e , h u t  m u s t  he above i t  w h e n  t h e c u r-
v a t u r e  of t h e  t e r r a i n  ( a n d  h e n c e  t h e  clearance c u r v e )  is suffi-

ciently sharp as to exceed the acceleration capa b ilit y of the air-
craft. The total solu tion path is formed by parametricall y opti-

mizin g the cubi c spline form subject to the operation al constraints

(g-lim its , etc.) imposed . Using the diff L ren t i ah i l i t v propert y of

t he  c u b i c  s p l i n e , t h e  o p t i m i z a t i o n  p r o c e d u r e  can  generate not only

the reference altitude profile h~ hut also t h e  rates of change

* A cubic spline is a continuous curve consisting of cubic
polynomi al segm ents pieced together such that t h e c u r v e
has  c o n t i n u o u s  f i r s t  -and  second  d e r i v a t i v e s .

0
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h R and h R .  T h e s e , in turn , can be used to e s t - mbli s lr 1 c o m p l e t e

and cons i stent set of reference states; for e x a m p l e , R c an  be

found from by the r e l i t  ion :

ii 
R 

= ~ R ~ in R 
( 0 4 )

once the reference velocit y y
R is established .

Reference velocity can be determined so as to satisf y an’.- of

the secondary guidance objectives cited a b o v e .  For examp le , t h e
veloci ty which corresponds to sustained flight at a desired , ml l oc ~-

able energ’- level may be selected as reference. ~u ch  a n ex a m p l e  is
illustrated b y Fi gure 28 , w h i c h  sho w s the given potential energy

( g h ~~) a nd t h e  m i n i m u m  and m a x i m u m  t o t a l  e n e r g y  ( p o t e n t i a l  p l u s
ki n e t i c )  c o r r e s p o n d i n g  to s u s t a i n e d  f l i g h t  a t  t h e  m inimum and max-

m m i i n i allo w able velocities ~V - and V ~ . The f i - i r e  ~l l u s t r ; I t e smm max -

allowable constant energy levels; i.e. , those which lie t~~ta 11v

within the m l lo ~ ahle corridor over a reasonable range. An’. of these

a l l o w a b l e  en e r g y  l e v e l s  cou ld  be s e l e c t e d  as t h e  r e f e r e n c e  F ,-j ,
say, on the basis of fuel consumption , engine life , mission timing,

etc. The  corresponding reference velocit y is then found from:

~/2 ~
ER 

- 

~
hR) (95)

C. Calculation of Remaining Reference t~uan titi es

The preceding has presented severai guidance techni ques

which can be used to determine optimal reference values of selected

state variables. The path-control concepl , however , requires re-

ference values for all states and controls consi dered. The cal-

culation of the remaining reference states and nominal controls

is not a trivial matter , since all the reference quantities mus t

be mutually consistent if the overall desi gn is to approach optim-

al itv . A very simple example of caJculating such a “residual”

reference state is by using the expression for heading rate dur ing

a c o o r d i n a t e d  t u r n :

‘p
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~ t a n  ~ ( 9 b )

R

Thus , g i v e n  t h e  r e f e r e n c e  b a n k  a n g l e  t R~ 
t h e  cons istent reference

heading rate is g iven approximately by Eq. ~f c )

More frequentl~- , however , the desi gner must revert to a de-

t a i l e d , six degree of freedom nonlinear model of the aircraft

(see Appendix) in order to generate a comp lete and c o n s i s t e n t  se t
of references. Frequentl y , iterative solutions of these nonlinear

differential equations are required , or appro x imation techniques

are used t o  reduce computational burden . Further discussion of

F 
such techniques is beyond the scope of this report.

4. PERTURBATI c~\ CONTRCL

In the context of the path control problem , the primar y ob-

jective of t h e  p e r t u r b a t i o n  c o n t r o l  f u n c t i o n  is the accurate and

e f f i c i e n t  t r a c k i n g  of t h e  r e f e r e n c e  s t a t e .  - \ c c u r a t e  t r a c k i n g , or
“departure prevention ” , serves to enhance the effectiveness of the

reference generation function in achieving over-all path- control

objectives. Constraining the departure from the reference has the

added benefit that , by so do ing , the linearit~ assumptions upon

which the perturbation feedback controller design is based are

indeed valid. Secondary objectives of the perturbation control

function are disturbance rejection , robustness (i.e., the reduction

in s e n s i t i v i ty  to  u n c e r t a i n t y  in t h e  c o n t r o l l e r  d e s i g n  p a r a m e t e r s ) .

and s t a b i l i t y  a u g m e n t a t i o n .

The methods used to achieve these objectives are many and

varied. historicall y , classical frequency-domain techni ques have

been used to design simple analog or digital control loops to ad-

dr ess the objectives on an individual basis. As air vehicles have

increased in complexity (e.g., additional , redundant actuators) and

mission objectives have increased in sophistication (e.g., path

control) , classical methods have given way to proven multi variable

techniqu en for linear system des ign. flften , a design is formulated
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u s i n g t h e  more  c o m p r e h e n s i v e  (and  direct) linear multiv a riable

techniques and checked at various operating points or flight con-
d i t ion s us i n g a c l a s s i c a l  analysis.

For illustration , two perturbation controller design examp les

a re p r e s e n t e d  b e l o w , ea ch u t i l i z e s  a d i f f e r e n t  d e s i g n  c o n c e p t .

a. Lateral-axis Perturbation Control Design by Pole Placement
Me thods

For simp lified motion in the lateral p lane , only five

states need be considered. These states , expressed in t e r m s  o f

t h e i r  r e f e r e n c e  v a l u e s  and p e r t u r b a t i o n  v a l u e s , a r e :

X X R + 3 X

= 
~ R 

+

= 
R 

+ 
~ (~)T~

= 
~R 

+

= + ~~~

The r e f e r e n c e  v a l u e s  and t h e i r  r a t e s  of  c h a n g e  ~i f  needed)  a r e
a s s u m e d  t o  h a v e  been computed by the reference gener ator.

The objective is to obtain a closed-loop control s\stem which

w i l l  keep t h e  p e r t u r b a t i o n  v a l u e s  s m a l l .  A c l a s s i c a l  p o l e -p l a c e m e n t

techni que will be used fo r  t h i s  e x a m p l e .

The f i r s t  s t ep  in t h e  t e c h n i q u e  [ 2 ~~] is to d e r i v e  an a d e q u a t e
linear model of t h e  a i r c r a f t  s t a t e  p e r t u r b a t i o n  dy n a m i c s .  The de-

rivation begins with 1 h i g hly s im p l i f i e d  n o n l i n ea r m o d e l :

= v cos -
-

= V S i n  - - (98)

( 4 - ’V ) t a n :-

J
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N e x t , f i r s t - o r d e r v a r i a t i o n s  a r e  t a k e n  on E q .  ( 9 5 )  a~~ou t  t h e
refere nce state :

ix = ‘R ~~~ 
~~~ 

+ cos

cos R~~ 
+ S l f l  

~~~
= 

~~~~~~ 
sec t 3 :  - 

~ R~~~R~ ~~

To elimina te the sin and cos ‘R t e rms . E q. (99) is rotated
i n t o  t h e  “m o v i n c  t a r g e t  c o o r d i n a t e  sy s t e m ” by the rotation :

= 
[c::

.
R ::: : :] [j

A s shown in Fi g u r e  2 9 , this coo rdinate system is attached to t h e

r e f e r e n c e  or  “p h a n t o m ” p o s i t i o n  and o r i e n t e d  a l o n g  t he r e f e r e n c e
direct~ c-a of travel -

fhe linear perturbation model in the m ovin g target coordi na te

sys tem , then , i s :

= + (101)

- = 
~~~~ 

- :
1~~-~~~

- ( 1 0 2 )

= t g / V ~~) sec t RSl - 

~~~~~~~~~ 
5V (103)

As n o t e d  in E q s .  (101 )  and ( 1 0 2 ) ,  the  l i n e a r i z e d  e q u a t i o n s  - ire
coupled through the reference heading rate 

~R’ 
which , along w ith

and :R, is a parameter of the model.

Choosing bank angle and velocity magnitude as the control

v a r i a b l e s  and  u s i n g  an empirically derived model of the airc ra ft /

stability augmentation system , an over-all perturbation feedback
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